Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенилаланин реакции

Рис. 44. Изменение свободной энергии фермент-субстратного взаимодействия по координате реакции (4.28) для химотриптического гидролиза метиловых эфиров Ы-аце-тил- -фенилаланина (сплошная линия) и Ы-ацетилглицина (пунктирная линия) [116]. (Для диаграммы использованы значения стандартных свободных энергий, полученные интерполяцией линейных зависимостей, приведенных на рис. 43). Рис. 44. <a href="/info/12282">Изменение свободной</a> <a href="/info/1377847">энергии фермент-субстратного взаимодействия</a> по <a href="/info/9220">координате реакции</a> (4.28) для химотриптического <a href="/info/604804">гидролиза метиловых эфиров</a> Ы-аце-тил- -фенилаланина (сплошная линия) и Ы-ацетилглицина (пунктирная линия) [116]. (Для диаграммы использованы <a href="/info/1498297">значения стандартных свободных энергий</a>, полученные <a href="/info/135102">интерполяцией линейных</a> зависимостей, приведенных на рис. 43).

    Суш,ественным продолжением этих синтетических путей являются реакции дезаминирования как фенилаланина, так и тирозина до соответствующих непредельных ароматических кислот — коричной и п-кумаровой (схема 8.4.9). Хотя [c.218]

    После гидролиза продуктов реакции горячей концентрированной соляной кислотой получаются, соответственно, I- и 1)-фенилаланин (в виде хлоргидратов). [c.360]

    В растениях -тирозин—аммиак-лиазе обычно сопутствует -фенилаланин—аммиак-лиаза, которая присутствует в значительно меньших количествах [74]. В кукурузе лишь один фермент ответственен за элиминирование аммиака как из -фенилаланина, так и из -тирозина это означает, что с обоими субстратами взаимодействует один и тот же активный центр фермента [80]. -Тирозин—аммиак-лиаза действует так же стереоспецифично, как и сопутствующий ей фермент, ответственный за превращение -фенилаланина реакция протекает с удалением 3-рго-(S)-водородного атома (см. схему 45) [81]. [c.712]

    Ферментативное гидроксилирование фенилаланина с образованием тирозина является одной из наиболее точно установленных реакций в биосинтезе фенолов. В этой реакции, катализируемой высокоочищенным ферментом, происходит образование фенола (тирозина) из его нефенольного предшественника (фенилаланина). Реакция имеет первостепенное значение, так как она обусловливает образование незаменимой аминокислоты — тирозина — у животных. Кроме того, эта реакция представляет собой начальную стадию нормаль ного распада фенилаланина в животных тканях. С другой стороны, в высших растениях и микроорганизмах образование тирозина идет и за счет переами нирования /г-оксифенилпировиноградной кислоты, так что в некоторых слу чаях почти совсем не происходит превращения фенилаланина в тирозин [35 36, 37]. Действительно, попытки обнаружить гидроксилирование фенилаланина в высших растениях до сих пор остаются неудачными (Либби, неопубликованные данные). [c.321]

    Например, если в полипептидной цепи белка имеется звено фенилаланина, реакцию можно представить схемой [c.337]

    Построенные из п-глюкозных единиц циклодекстрины хи-ральны, и для них в ходе реакций наблюдалось проявление хиральных свойств к субстратам [173]. Эти свойства использованы в работе Бреслоу и сотр. [186] на основе циклодекстрина, ковалентно связанного с коферментом, они синтезировали искусственный фермент . Он состоит из р-цнклодекстриипиридоксамина (разд, 7.2), который способен селективно осушествлять реакцию переаминирования, превращая фенилпнровиноградную кислоту в природный ь-энантиомер фенилаланина с выходом 52%. [c.311]


    Курциус пр имвнил реакцию расщепления азидов кислот для синтеза глицина, аланина, валина и фенилаланина. [c.662]

    На рис. 14-20 показаны основные катаболические пути, а также несколько реакций биосинтеза, составляющих метаболизм фенилаланина и тирозина в организме животных. Переаминирование с превращением в фенилпируват (реакция а) протекает довольно легко, и об-оазуюшяйся проду ст может окислительно декарбоксилироваться, пре- [c.144]

    В оптимальных (по pH) условиях действия фенилаланина анализируют зависимость скорости реакции от концентрации ингибитора [c.336]

    Много внимания уделялось зависимому от птеридина гидроксилированию фенилаланина в тирозин [уравнение (10-52)], что частично объяснялось наличием такого тяжелого нарушения обмена, как фенилке-тонурия [118], при которой этой реакции не происходит. Новорожденные с таким нарушением поначалу ничем не отличаются от здоровых детей, однако вскоре они начинают отставать в умственном развитии. Если поступление фенилаланина в организм такого ребенка ограничить до уровня, необходимого лишь для синтеза белков, то можно предотвратить развитие тяжелого дефекта. Некоторые дети на такой диете уже выросли до зрелого юношеского возраста без какого-либо отставания в умственном развитии, причем с возрастом у них повысилась переносимость фенилаланина. [c.145]

    В то же время при восстановлении а-ацетаминокоричной кислоты образуется неактивный фенилаланин [реакция (б)]. [c.251]

    Тирозин образуется из фенилаланина в реакции, катализируемой фенилаланингидроксилазой (рис. 29.11), поэтому фенилаланин относится к незаменимым аминокислотам, а тирозин—нет (при условии, что диета содержит достаточное количество фенилаланина). Реакция необратима, и поэтому тирозин не может заменить пищевой фенилаланин. Фенилала-нингидроксилазный комплекс является оксигеназой со смешанной функцией, она имеется в печени млекопитающих и отсутствует в других тканях. В резу- [c.303]

    Синтез аминокислот является одной из приоритетных задач биотехнологии. Получение фенилаланина возможно методами прямого микробиологического синтеза либо методами биотрансформации с использованием предшественников, в качестве которых рассматриваются кори шая кислота, фенилпируват. Использование для синтеза фенилаланина предшественников считается наиболее перспективным в силу более высоких достигаемых концентраций целевого продукта и большей скорости реакции. [c.146]

    Из сказанного можно сделать вывод, что при гидрофобном фермент-субстратном взаимодействии типа Е-Н (схема 2,10) величина Д 5,ВНУ1Р (уравнение 2.19) принимает существенные значения даже при не слишком больших гидрофобных фрагментах Н. Так, для весьма распространенной в живой природе бензильной группы (встречающейся в молекулах производных фенилаланина) понижение свободной энергии активации, обусловленное погружением ее (переносом из воды) в гидрофобную среду активного центра (при образовании переходного состояния химической реакции), может составить величину вплоть до —7 ккал/моль (—29,4 кДж/моль) в зависимости от значения а с 2, которое реализуется в данной энзиматической системе. Это соответствует ускорениям реакции вплоть до 10 раз. [c.45]

    Наглядной иллюстрацией этому положению служат профили свободная энергия — координата реакции (рис. 44). Из рисунка видно, что в случае производного фенилаланина (где Н равно-СеНэСНа) уровень свободной энергии как комплекса Михаэлиса, так и ацилфермента на 3,6 ккал/моль (15,1 кДж/моль) ниже, чем для производного глицина (где Н равно Н). Это значение соответствует как раз свободной энергии переноса фрагмента СвНдСН2 из воды в органический растворитель (см. 4 этой главы). [c.153]

    Как видно из уравнения (4.50), характеристика реакционной способности нуклеофила, действующего в фермент-субстратном комплексе, зависит от природы сорбированного субстрата. В табл. 29 приведено значение/гц,Ез для.реакции ацилирования химотрипсина одним из наиболее специфических субстратов, производным фенилаланина. Интересно сравнить это значение с реакционной способностью алкоксильных ионов, поскольку головная группа ферментного нуклеофила — это алифатический гидроксил остатка 5ег-195, протон которого взаимодействует с имидазольной группой Н1з-57. Значение константы скорости реакции метилового эфира М-ацетил-1-фенилаланина с алкоксиль-ным ионом М-ацетилсеринамида [c.163]

    Особого внимания заслуживает вывод (см. стр. 163), справедливость которого не ограничена никаким допущением. Напомним, что он непосредственно следует из того, что в случае специфического субстрата (метилового эфира М-ацетил-1-фенилаланина) константы скорости щелочного гидролиза и катализируемого ферментом водного гид-ррлиза (на скоростьлимитирующей стадии, /гз/55) практически совпадают (табл. 30). Поэтому можно считать, что роль химотрипсина как катализатора реакции гидролиза сводится к сорбции на активном центре химически инертных фрагментов субстратной молекулы с последующим использованием сил. сорбции для следующих действий 1) поляризации молекулы воды, встроенной в активный центр ацилфермента настолько, что она полностью депротонирована 2) жесткому закреплению (ориентации) субстратного карбонила по отношению к атакующему нуклеофилу (образовавшемуся гидроксильному иону), чтобы эффективная концентрация последнего достигла предельного для воды значения —55М. 1 [c.166]


    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]

    В таблице 6 приведена рН-зависимость гидролиза фор-милгидразида Н-формил-Ь-фенилаланина, катализируемого а-химотрипсином [4]. Определить значения рК ионогенных групп свободной формы фермента и фермент-субстратного комплекса, контролирующих реакцию, и предложить схему рН-завиоимости ферментативного гидролиза. [c.228]

    Реакция гидролиза К-трифторацетил-Ь-фенилаланина, катализируемая пепсином, происходит только в том случае, если карбоксильная группа активного центра фермента является протонированной, а карбоксильная группа субстрата — депротонирован-ной [14]. Исходя из данных рН-зависимости ферментативной реакции (табл. 22), вычислить значения рК ионогенных групп субстрата и фермента, принимающих участие в реакции. [c.237]

    При К = СН2СООС2Н5 продуктом реакции являсгся глутаминовая кислота (Р = СН2СООН) с оптической чистотой 8% при К = СбНб образуется фенилаланин с оптической чистотой до 30%. Сходным путем был получен и стильбен-диамин (оптическая чистота 7%)  [c.152]

    Аналогично реагируют и другие ароматические диазосоедине-ния. Эта реакция может быть использована для синтеза -арил-акриловых или р-арил-а-аминопропионовых кислот, в частности фенилаланина а также для получения р-арилпиперидинов [c.61]

    Встречается и обратная ситуация, когда 5-образная кривая в присутствии аллостерического эффектора превращается в гиперболическую. Например, пируваткиназа скелетных мышц характеризуется кинетикой Михаэлиса, но в присутствии аллостерического ингибитора (фенилаланина) кривая зависимости скорости реакции от концентрации субстрата становится 5-образной, при этом сродство фермента к субстрату (фосфоенолпирувату) уменьшается. Изменение кинетических свойств под действием аллостерических эффекторов обусловлено конформационной перестройкой молекулы белка. С помощью сшивающих реагентов или каких-либо других воздействий на структуру белка можно наблюдать потерю чувствительности фермента к аллосте-рическим эффекторам. Для выявления аллостерических свойств иногда необходимо изменить условия определения активности сместить pH реакционной среды в кислую или щелочную область от рН-оптимума или исследовать влияние эффектора при ненасыщенной концентрации субстрата. [c.215]

    Применение 507о-пого избытка втор-бутилового эфира хлоругольной кислоты гри синтезе ангидрида с карбобензилоксигли-цином привело к образованию нечистого продукта реакции при конденсации с этиловым- эфиром ОЬ-фенилаланина, но количество выделенного чистого продукта лишь незначительно отличалось от полученного в том случае, когда при сиитезе ангидрида было взято молярное количество втор-бутилового эфира хлоругольной кислоты [21]. [c.205]


Смотреть страницы где упоминается термин Фенилаланин реакции: [c.267]    [c.57]    [c.397]    [c.136]    [c.230]    [c.119]    [c.248]    [c.428]    [c.713]    [c.101]    [c.63]    [c.64]    [c.270]    [c.139]    [c.139]    [c.142]    [c.145]    [c.151]    [c.235]    [c.80]    [c.178]    [c.182]    [c.186]    [c.188]    [c.205]   
Общая органическая химия Т.10 (1986) -- [ c.601 ]




ПОИСК





Смотрите так же термины и статьи:

Ксантопротеиновая реакция (на тирозин, триптофан, фенилаланин)

Фенилаланин

Фенилаланин Фенилаланин

Фенилаланин нингидринная реакция



© 2025 chem21.info Реклама на сайте