Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование ароматических соединений по методу Фриделя — Крафтса

    Алкилирование ароматических углеводородов. Промышленное алкилирование ароматических соединений проводится в основном с целью получения этилбензола (полупродукта синтеза стирола), кумола полупродукта синтеза фенола) и алкилбензолов с длинными алкильными цепями (полупродуктов синтеза детергентов). При получении этилбензола в качестве катализатора применяется главным образом хлористый алюминий. Ежедневно таким способом производят несколько тысяч тонн этилбензола. Алкилирование с А1С1з проводят при приблизительно 4 атм, 120° С и соотношении бензола и этилена в сырье, равном 2,5. Этот способ алкилирования используется уже много лет и в настоящее время считается одним из наиболее эффективных методов получения этилбензола. Однако применение катализаторов Фриделя — Крафтса связано с рядом трудностей аппаратура должна изготавливаться из материала, устойчивого к коррозии, а применяемое сырье должно иметь достаточно высокую степень чистоты, иначе расход катализатора будет очень большим. Корродируют аппаратуру не столько сам катализатор А1С1з, сколько комплексы, которые образуются в ходе реакции в результате взаимодействия хлористого алюминия с компонентами сырья. Эти комплексы значительно более агрессивны и иногда единственным способом борьбы с коррозией является непрерывная замена корродированных узлов аппаратуры. Образованию таких комплексов, очевидно, способствуют содержащиеся в сырье примеси. Так, в частности, установлено, что одни и те же установки для производства кумола с фосфорнокислотным катализатором хорошо работают в одних местах и плохо в других. Хлористый алюминий частично растворяется в продуктах в 200 частях этилбензола растворяется одна часть А1С1з. В результате возникает еще одна проблема, связанная с нейтрализацией кислотных растворов, поскольку продукт алкилирования промывают водой, чтобы удалить растворенный в нем катализатор. Именно по этим причинам в настоящее время широко исследуется возможность проведения алкилирования на цеолитных катализаторах. [c.390]


    В зависимости от соотношения реагентов в ароматическое ядро можнО ввести одну или несколько алкильных групп Часто образуется смесь продуктов различной степени алкилирования При наличии алкильного заместителя-в ароматическом соединении заметно облегчается его алкилирование Характерной особенностью алкилирования по способу Фриделя—Крафтса является тенденция к перегруппировкам алкильных групп во время реакции При ал-килированиц соединениями, содержащими более двух атомов углерода, всегда образуются производные с разветвленной цепью Так, прн алкилиро-ванни первичными спиртами в присутствии серной кислоты происходит перегруппировка алкильного остатка Изомеризация алкильного остатка происходит и при алкилироваиии с помощью олефиновых углеводородов Последний метод широко используется в промышленности [c.259]

    АЛКИЛИРОВАНИЕ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ ПО МЕТОДУ ФРИДЕЛЯ — КРАФТСА [c.130]

    Реакция Фриделя—Крафтса в настоящее время превратилась в широко применяемый метод для алкилирования и ацилирования ароматических углеводородов. Патент Фриделя и Крафтса Усовершенствования в переработке углеводородов с целью очистки и превращения их в другие соединения [2] был, вероятно, первым из многочисленных патентов, касающихся применения хлористого алюминия в нефтяной промышленности. Полимеризующее действие хлористого алюминия получило подобное же широкое применение. [c.14]

    Важный случай применения реакции алкилирования по Фриделю— Крафтсу — это замыкание циклов [217]. Наиболее широкораспространенный метод состоит в нагревании с хлоридом алюминия ароматического соединения, содержащего в подходящем положении галоген, гидрокси- или олефиновую группу, как, например, при синтезе тетралина  [c.352]

    Алкилирование и ацилирование ароматических соединений по Фриделю-Крафтсу. Метод Фриделя—Крафтса основан на резком повышении электрофильности алкилгалогенидов и галогенангидридов карбоксильных кислот при комплексообразовании с безводным А1С1з или другой аналогичной апротонной кислотой. Используя А1С1з или другие апротонные кислоты совместно с алкенами, можно генерировать соответствующие ионы карбония, также способные к электрофильной атаке ароматического углерода. Возможно несколько вариантов реакций этого типа. [c.329]


    Реакция алкилирования по Фриделю—Крафтсу требует очень жестких условий и применения сильных кислот Лью- иса в качестве катализаторов. Только немногие функциональные группы инертны к таким катализаторам. Свободнорадикальное алкилирование ароматических соединений можно рассматривать как дополнительный, более мягкий метод синтеза [3]. Реакция дает смеси продуктов, получающиеся как за счет атаки по ядру и боковой цепи, так и за счет димеризации промежуточных ст-комплексов. Простые алкильные радикалы, вероятно, лучше всего генерировать фотолизом алкилмеркуриодидов [80]. Однако циклогексен- [c.53]

    Ароматические соединения, содержащие электроноакцептор- ные заместители NO2, N0, N, OOR и др., не алкилируются в условиях реакции Фриделя—Крафтса. Ароматические амины, I фенолы связывают кислоты Льюиса в нереакционноспособный f донорно-акцепторный комплекс, где неподеленная пара электро- нов кислорода или азота координируется с атомом металла кис-лоты Льюиса. Поэтому для алкилирования этих соединений в р ароматическое ядро используют другие методы, г 475 [c.475]

    Реакцию ароматических субстратов с диолами и диоксанами проводили в традиционных для алкилирования по Фриделю-Крафтсу условиях, Б качестве катализатора использовали хлорид алюминия или концентрированную серную кислоту. Варьировали время реакции (3-24 ч), температуру (25-100°С), соотношение реагентов. Реакционную смесь анализировали методом ГЖХ. Во всех опытах были получены сложные смеси продуктов, из которых пока не удалось выделить индивидуальные соединения, однако некоторые из них идентифицированы хромато-массч пектральным методом. [c.46]

    Как известно, алкилирование можно также осуществлять с помощью олефинов в присутствии катализаторов Фриделя — Крафтса. Этот метод имеет наибольщее техническое значение. В качестве катализаторов в первую очередь находят применение фтористый водород, серная и фосфорная кислоты. Как обсуждалось ранее, следует прежде всего допустить присоединение протона к олефину. При этом образуется алкил-катион, который непосредственно реагирует с ароматическим сосдине-нпем без предварительного присоединения аниона (см. также стр, 390). Так как присоединение кислот к олефинам подчиняется правилу Марковникова, пропилен дает исключительно изопропильное производное соответствующего ароматического соединения. [c.450]

    Первые двадцать разделов посвящены методам синтеза с помощью окисления. Для проведения этой реакции необходимы реагенты, которые не вызовут более глубокого окисления, чем до альдегида. В разд. А.1 обсуждаются пять возможных реагентов, а также активная двуокись марганца, а остальные реагенты рассмотрены в разд. А.5. Что касается методов восстановления,, прежде всего следует упомянуть метод Брауна, в котором для восстановления хлорангидридов кислот (разд. Б.З) и нитрилов (разд. Б.4) используется триалкоксиалюмогидрид лития. Затем рассматриваются реакции Фриделя — Крафтса (разд. В), в которых альдегидная группа может быть присоединена к ароматическому кольцу или введена в этиленовую группу. Обсуждается ряд методов гидролиза (разд. Г), которые весьма многочисленны, так как многие гетероциклические соединения могут гидролизоваться с образованием альдегидбв этот метод стал важен после того, как было обнаружено, что 1,3-дитиа-циклогексаны (разд. Г.З) после алкилирования, а дигидрооксазины [c.5]

    Малая селективность замещения и недостаточная активность нуклеофильных алкильных радикалов ограничивает препаративную ценность свободнорадикального алкилирования карбоциклических ароматических соединений. Однако в ряду ароматических азагетероциклов, обладающих в протонированной форме высокой электронодефицитностью свободнорадикальное алкилирование является ценным методом синтеза. К его достоинствам относятся высокая селективность, хорошие выходы и простота эксперимента. Роль протонирования может быть проиллюстрирована на примере метилирования. хинолина ди-трег-бутилпероксидом. В отсутствие кислоты метилирование направляется во все возможные положения 2, 4, 5, 8 и остальные (соотношение 1 2,4 1,6 3 1,8), а в присутствии НС1 — исключительно в положения 2 и 4 (1 1) [4, т. 8, с. 225]. В реакциях с протонированными азагетероциклами нуклеофильные алкильные радикалы более активны и более селективны, чем с непротонированными основаниями [1046J. Ориентация при свободнорадикальном алкилировании гетероароматических оснований в присутствии кислот совпадает с ориентацией при нуклеофильном алкилировании (см. разд. 12.2) и противоположна ориентации при электрофильном алкилировании по Фриделю —Крафтсу (см. разд. 6.1). [c.457]

    В предыдущих разделах были рассмотрены экспериментальные и теоретические данные по л-комилексам, EDA-комилексам и комплексам присоединения прогона в связи с проблемой основности ненасыщенных л-злектронных систем. Вопросы реакционной способности этих соединений были почти не затронуты, хотя отношение между реакционной способностью и основностью имеет исключительно большое значение для описания механизмов многих реакций. В тройных системах, например при алкилированни по Фриделю— Крафтсу, промежуточно образуется комплекс присоединения протона [73, 1451. Поскольку недавно был опубликован исчерпывающий обзор по реакции Фри-деля — Крафтса [1371, обсуждение ее в настоящей статье не является необходимым. Особое значение имеют обменные процессы Н — D, скорость которых зависит от основности ароматических соединений. Между логарифмами констант основности и констант скоростей обмена имеется линейное соотношение 140, 100—102, П5]. Существование такой линейной зависимости позволяет определить основность слабоосновных соединений, таких, как бензол [1151. Следовательно, существующие методы определения констант основности дополняются кинетическим методом. [c.333]



Смотреть страницы где упоминается термин Алкилирование ароматических соединений по методу Фриделя — Крафтса: [c.469]    [c.196]    [c.422]    [c.328]    [c.1100]    [c.530]   
Смотреть главы в:

Практикум по органическому синтезу Издание 5 -> Алкилирование ароматических соединений по методу Фриделя — Крафтса




ПОИСК





Смотрите так же термины и статьи:

Алкилирование по Фриделю-Крафтсу

Ароматические соединения алкилирование

Фридель

Фриделя Крафтса

Фриделя алкилирования



© 2025 chem21.info Реклама на сайте