Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анаэробный распад углеводов (анаэробный гликолиз)

    Анаэробный процесс расщепления углеводов может начинаться с гликогена — гликогенолиз — или с глюкозы— гликолиз. Конечным продуктом анаэробного распада углеводов является молочная кислота. [c.187]

    Анаэробный распад углеводов ( гликолиз)>) в мышцах и в других тканях. 1. Этот процесс отличается от спиртового брожения в первую очередь тем, что в нем исходным веществом является не глюкоза (или другой моносахарид, легко превращающийся в глюкозу), а полисахарид глюкозы — гликоген. Мышцы и другие животные ткани не могут непосредственно использовать глюкозу или другие моносахариды в их обмене. [c.252]


    Дальнейшее изучение этого вопроса привело к представлению, согласно которому первые стадии гликолиза и аэробного окисления глюкозы могут совпадать. В этом случае расхождение путей аэробного и анаэробного распада углеводов начинается на стадии образования пировиноградной кислоты в животных тканях или соответственно ацетальдегида в дрожжевых клетках. [c.258]

    Анаэробный распад углеводов в тканях животных (гликогенолиз и гликолиз) [c.331]

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]

    Как бы ни шел анаэробный распад углеводов в клетках, начинается ли он с распада гликогена (гликогенолиз) или же с распада глюкозы (гликолиз), дальнейший путь его, начиная с этапа образования глюкозо-6-фосфорной кислоты, всегда один и тот же. [c.289]

    По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - СОг и Н2О и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода (гликолиз) синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной. [c.138]


    Взаимосвязь гликолиза и глюконеогенеза (цикл Кори). Для координирования деятельности органов в интересах целостного организма важна координация процессов распада (гликолиз) и синтеза (глюконеогенез) углеводов. В работающих мышцах идет гликолиз — анаэробный распад глюкозы до молочной кислоты. Мышцы получают глюкозу из крови. Ткань мышцы не отдает глюкозу в кровь, поскольку нет фермента глюкозо-6-фосфатаза. Лактат из мышцы выходит в кровь и поступает в печень. В гепатоцитах идет глюконеогенез из лактата. Глюкоза поставляется в кровь, так как в печени есть фермент глюкозо-6-фосфатазы. Этот кругооборот и является циклом Кори. Для многих других органов (мозг, почки, селезенка) потребность в энергии сравнительно постоянна, и скорость распада глюкозы меняется незначительно. [c.165]

    АНАЭРОБНЫЙ РАСПАД УГЛЕВОДОВ (АНАЭРОБНЫЙ ГЛИКОЛИЗ) [c.277]

    Каковы же особенности анаэробного распада углеводов в мышце сердца вообще и при экспериментальном миокардите в частности Прежде всего характерным для мышечной ткани сердца является относительно малая интенсивность гликолитического процесса по сравнению со скелетной мышцей. Это следует из сопоставления количеств фосфоглицериновой кислоты, образующейся за 30 мин. инкубации в экстрактах мышцы сердца при разведении 1 6 и в экстрактах скелетных мышц при разведении 1 16 (см. рис. 6 и 7). Подтверждением малой интенсивности гликолиза в мышце сердца по сравнению со скелетной могут служить результаты следующего опыта. При одинаковом приготовлении водного экстракта из мышцы сердца и скелетной мышцы кролика и при получасовой инкубации их в одинаковых условиях без добавления субстратов образования фосфоглицериновой кислоты практически не происходит ни в том, ни в другом случае. [c.125]

    Объектом для изучения анаэробного гликолиза уже с давних пор, наряду с дрожжевыми клетками, служит мышца. Оказалось, что гликолиз в мышцах и спиртовое брожение в дрожжевых клетках происходят по одному и тому же пути, следовательно, с образованием одинаковых промежуточных продуктов. Различия имеются только лишь на этапе превра-н1,ения пировиноградной кислоты, которая в мышцах при анаэробном гликолизе не подвергается декарбоксилированию, а восстанавливается с образованием молочной кислоты. Отсюда конечным продуктом анаэробного гликолиза в мышцах является молочная кислота, в то время как в дрожжевых клетках — этиловый спирт и углекислый газ. Необходимо отметить, что анаэробный распад углеводов с выделением молочной кислоты специфичен не только для мышц. Установлено, что подобный процесс происходит и в других тканях организма человека и животных. Он имеет место также у микроорганизмов (бактерий молочнокислого брожения), у которых анаэробный распад углеводов заканчивается образованием молочной кислоты. [c.288]

    В этом случае все реакции протекают анаэробно (без участия митохондрий и потребления кислорода) и приводят к образованию и накоплению лактата (молочной кислоты). Такой анаэробный распад углеводов получил название анаэробный гликолиз, или просто гликолиз. [c.54]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Гликолиз является эволюционно ранним процессом выработки энергии в организме в ходе распада углеводов и протекает в анаэробных условиях у микроорганизмов и при ограниченном снабжении кислородом у высших организмов. [c.78]

    Превращение углеводов в мышечной и других тканях. Работа № 87. Анаэробный распад гликогена или крах мала до молочной кислоты (гликолиз).  [c.340]

    Из схем видно, что основное отличие механизма гликолиза (анаэробного расщепления сахара с образованием молочной кислоты) от механизма окислительного распада углеводов сводится по существу к следующему при гликолизе пировиноградная кислота восстанавливается и превращается в молочную кислоту — конечный продукт анаэробного обмена, при дыхании образующаяся пировиноградная кислота подвергается дальнейшему окислению с образованием в конечном счете воды и СОз. [c.258]


    Брожение, как мы видим, вовсе не отделяется от дыхания, а как бы составляет его часть, притом начальную. Можно, по-видимому, рассматривать брожение как самый древний, исходный путь распада углеводов (в связи с этим небезынтересно вспомнить, что брожение, или анаэробный гликолиз, происходит в слабо структурированной основной плазме, тогда как заключительные этапы дыхания, напротив, протекают в высокоорганизованных специализированных органеллах — митохондриях). [c.409]

    Большой шаг вперед в деле изучения анаэробного гликолиза был сделан Эмбденом в 1932 г., показавшим, что при распаде углеводов в мышцах в виде промежуточных продуктов образуются фосфоглицериновая и глицеринфосфорная кислоты. Обнаруже- [c.278]

    Исследованиями Палладина, его сотрудников и других изучены в головном мозге отдельные ферменты анаэробного гликолиза. Можно считать установленным, что распад углеводов с образованием молочной кислоты (анаэробный гликолиз) в нервной системе происходит по тому же пути, как и в других тканях. В ткани головного мозга имеет место также и аэробный гликолиз (образование молочной кислоты в присутствии кислорода). Следует, однако, отметить, что энергия углеводов в основном используется в результате их аэробного распада с образованием углекислого газа и воды. [c.564]

    Таким образом, в анаэробных условиях каждая молекула глюкозо-6-фосфа-та дает две молекулы молочной кислоты, которая в этом случае представляет конечный продукт реакции. Если исходным углеводом для образования глю-козо-6-фосфата, а затем молочной кислоты служит глюкоза, то процесс называют гликолизом. Если же исходным углеводом, дающим начало глюкозо-6-фосфату (через глюкозо-1-фосфат) и потом молочной кислоте, является гликоген, то процесс называют гликогенолизом. Учитывая, что и в том и в другом случае на промежуточных стадиях дихотомического распада синтезируется АТФ, гликолиз и гликогенолиз служит средством быстрого получения энергии в анаэробных условиях. [c.351]

    В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты — полиса-харидазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям по пути анаэробного распада углеводов — брожению (гликолизу) и в аэробных условиях — по пути горения. [c.18]

    ГЛИКОЛИЗ (от греч. gly kys-сладкий и lysis-разложение, растворение, распад), анаэробное (без участия Oj) негидро-литич. расщепление углеводов (гл. обр. глюкозы) в цитоплазме под действием ферментов, сопровождающееся синтезом АТФ и заканчивающееся образованием молочной к-ты (см. рис.). [c.580]

    Соотношение между аэробным и анаэробным распадом углеводов определяется потребностью клеток в энергш . При низкой и средней потребности клеток в АТФ преобладает аэробное окисление, а при высокой потребности в энергии ббльшая часть углеводов превращается в молочную кислоту, т. е. используется в гликолизе. [c.55]

    Многочисленные исследования, произведенные в области изучения процесса гликолиза, показали, что в организме анаэробный распад углеводов совершается через ряд проме-жуточных этапов следующим образом. Гликоген под влиянием фермента а-глюканфосфорилазы распадается с образованием глюкозо-1-монофосфорного эфира . [c.163]

    Гликолизом называют анаэробный распад углеводов в тканях с образованием молочной кислоты. Процесс гликолиза подробно изучен и включает в себя ряд отдельных реакций. В мышцах главным субстратом гликолиза является гликоген, который подвергается сначала ф о с-форолизу (распаду с присоединением фосфорной кислоты) и далее, через фосфорные эфиры гексоз, триоз и через пировиноградную кислоту распадается до молочной кислоты. Вследствие этого процесс этот часто называют также г л и-когенолизом. [c.153]

    При спиртовом брожении в процессе расщепления одной молекулы глюкозы образуется четыре молекулы АТФ (50 ккал, или 210 кдж). Из них две расходуются на функциональную деятельность и синтез. По расчетам некоторых авторов, при гликолизе и гликогенолизе в богатых энергией фосфорных связях аккумулируется 35—40 /о всей освобождающейся свободной энергни, остальные 60—65% рассеиваются в виде теплоты. Коэффициент полезного действия клеток, органов, работающих в анаэробных условиях, не превышает 0,4 (в аэробных 0,5). Эти расчеты основаны главны.м образом на данных, полученных на мышечных экстрактах и дрожжевом соке. В условиях живого организма мышечные клетки, органы и ткани утилизируют энергию, вероятно, значительно больше. С физиологической точки зрения процесс гликогенолиза и гликолиза имеет исключительно важное значение, особенно когда жизненные процессы осуществляются в условиях недостатка кислорода. Папример, при энергичной работе мышц, особенно в первой фазе деятельности, всегда наблюдается разрыв между доставкой кислорода в мышцы и его потребностью. В этом случае начальные энергетические затраты покрываются в значительной степени за счет гликогенолиза. Аналогичные явления наблюдаются при различных патологических состоя иях (гипоксия мозгз, сердца и т. п.). Кроме того, потенциальная энергия, заключенная в молочной кислоте, в конечном счете не теряется для высокоорганизованного организма. Образующаяся молочная кислота быстро пере.ходит из мышц в кровь и далее доставляется в печень, где снова превращается в гликоген. Анаэробный распад углеводов с образованием молочной кислоты очень распространен в природе он наблюдается не только в мышцах, но и в других тканях животного организма. [c.334]

    Единство и теснейшая связь процессов брожения и дыхания растений, микроорганизмов и животных вытекают из того факта, что почти у всех живых организмов имеются одинаковые ферменты и те же основные промежуточные продукты, которые образуются в процессе их жизнедеятельности. Начальные этапы распада углеводов при анаэробном и аэробно.м дыхании одинаковы и начинаются с образования фосфорных эфиров глюкозы, именно глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-1,6-дифосфата. Фосфорилирование глюкозы является необходимым условием как при аэробном распаде углеводов до углекислого газа и воды во время дыхания, так и при распаде углеводов в анаэробных условиях с образованием молочной кислоты и спирта. Пути аэробного и анаэробного распада углеводов расходятся на стадии образования пировиноградной кислоты в животные тканях или соответственно уксусного альдегида в дрожжевых клетках. Пировиноградная кислота занимает центральное положение в обмене углеводов. Она образуется из глюкозы (после фосфорилирования) или из гликогена (после фосфоролиза) путем нормального гликолиза. В анаэробных условиях пировиноградная кислота либо распадается в результате прямого декарбоксилирования, как это наблюдается в дрожжах, либо восстанавливается водородом до молочной кислоты, как это имеет место в мышцах. Спирт и молочная кислота являются конечными продуктами анаэробного обмена. В аэробных условиях пи-роаиноградная кислота полностью окисляется до углекислого газа и воды, [c.339]

    Какая же роль в общем обмене углеводов организма отводится рассмотренным здесь путям распада углеводов брожению, гликолизу и дыханию, апотомическому и дихотомическому, анаэробному и аэробному  [c.355]

    Быть может, уместно именно здесь рассмотреть те факторы, которые (в кивотных клетках) играют главную роль в регулировании распада и ресинтеза глюкозы (и гликогена), иными словами, факторы, регулирующие обмен этих соединений. В общем можно считать, что во всех клетках, способных расщеплять глюкозу как в присутствии, так и в отсутствие кислорода, этот углевод исчезает (а лактат или же любой другой продукт анаэробного гликолиза или брожения накапливается) в анаэробных условиях быстрее, чем в аэробных. Это торможение гликолиза кислородом, впервые подмеченное Пастером, а впоследствии подтвержденное Мейергофом и Варбургом, известно под названием эффекта Пастера. Другое явление было открыто А. Хиллом в экспериментах с мышцей. Хилл обнаружил, что ресинтез гликогена и вообще углеводов протекает быстрее в аэробных условиях. Позднее это было доказано и для других тканей и клеток. [c.300]

    Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофос-фатный, кетодезоксифосфоглюконатный и др.). Они отличаются ключевыми продуктами и реакциями. [c.18]

    Между гликолизом и аэробным окислением углеводов существует тесная связь. Эта связь заключается прежде всего в том, что первые стадии гликолиза и аэробного окисления углеводов одинаковы. Расхождение путей анаэробного и аэробного распада начинается на стадии дальнейшего превращения пировиноградной кислоты, которая в отсутствие кислорода восстанавливается за счет водорода восстановлен1юй кодегидразы (К0Ш2) с образованием молочной кислоты в присутствии же кислорода она подвергается окислительному декарбоксилированию. При аэробном окислении углеводов по пентозному циклу расхождение путей начинается на стадии образования глюкозо-6-фосфорной кислоты. [c.298]


Смотреть страницы где упоминается термин Анаэробный распад углеводов (анаэробный гликолиз): [c.246]    [c.60]    [c.277]    [c.60]    [c.254]    [c.363]    [c.487]    [c.357]    [c.363]    [c.486]    [c.503]   
Смотреть главы в:

Биохимия Издание 2 -> Анаэробный распад углеводов (анаэробный гликолиз)




ПОИСК





Смотрите так же термины и статьи:

Анаэробный распад углеводов

Гликолиз

Гликолиз анаэробный



© 2025 chem21.info Реклама на сайте