Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки мышц и соединительных тканей

    В мышце находятся коллаген и эластин, которые в противоположность собственно мышечным белкам не содержат достаточного количества незаменимых аминокислот и трудно перевариваются при действии пищеварительных ферментов. В табл. 9 (см. приложение) приведено сопоставление аминокислотного состава белков, соединительной ткани мышц и полноценного белка молока — казеина. Содержание отдельных аминокислот дано в процентах при содержании в белке 16,0 г азота. [c.233]


    Каковы особенности строения сократительных белков мышц, белков соединительной ткани и переносчиков кислорода  [c.263]

    Из сопоставления видно (табл. 10, см. приложение), что повышенное содержание в мясе белков соединительной ткани снижает его пищевую ценность и поэтому определение в мясе собственно мышечных белков и белков соединительной ткани (коллаген и эластин) важно для установления питательной ценности мяса. В разных мышцах это отношение различно. [c.233]

    Структурообразующие белки тела человека называют фибриллярными белками (или волокнистыми, они имеют вытянутую, нитеобразную форму). Важнейшие фибриллярные белки животных — это кератин и коллаген белок кератин входит в состав волос, ногтей, мышц, рогов, игл и перьев коллаген — структурный компонент сухожилий, кожи, костей, соединительной ткани. При кипячении коллаген гидролизуется и образует растворимый в воде белок, называемый желатиной. В теле человека имеются растворимые белки, именуемые глобулярными белками. Альбумины, такие, как сывороточный альбумин, получаемый из крови животных, овальбумин яичного белка, лактальбумин молока, растворяются в холодной воде и слабом растворе соли. Глобулины, например глобулины плазмы крови, фибриноген, глобулин яичного белка, глобулин молока, растворяются в разбавленных растворах солей, но не в холодной воде. [c.384]

    Белки мышц и соединительных тканей [c.253]

    Рассматривая белковый состав человеческого организма (включая волосы, ногти, мышцы, соединительные ткани), мы вправе предположить, что молекулы, составляющие сложный организм, имеют сложную природу. В таком случае необходимо исследовать природу этих молекул жизни . При обработке белка раствором кислоты или основания вместо исходной молекулы белка возникает раствор, содержащий много более простых, гораздо меньших по размеру молекул — аминокислот. Молекула белка — высокомолекулярное соединение, или биополимер, в котором мономерные единицы — аминокислоты. Эти мономерные единицы содержат аминогруппу, карбоксильную группу и атом водорода, присоединенные к одному и тому же атому углерода. Однако в различных аминокислотах образующий четвертую связь с центральным атомом углерода атом (или группа атомов) не- [c.26]


    В основе животного мира также лежат высокомолекулярные соединения — белки, являющиеся главной составной частью почти всех веществ животного происхождения. Мышцы, соединительные ткани, мозг, кровь, кожа, волосы, шерсть, рог состоят в основном из высокомолекулярных белковых веществ (табл. 2). [c.13]

    Прежде чем рассмотреть исследования Астбери, кратко остановимся на предложенной им классификации белков, в основу которой был положен структурный признак [11, 12]. По этому признаку все белки делятся на два больших класса фибриллярных и глобулярных белков. Первые имеют вытянутую, волокнистую структуру вторые -форму глобулы (во времена Астбери они назывались корпускулярными белками). Такое разделение отчасти согласуется со спецификой функционирования белков и растворимостью их в воде. Фибриллярные белки входят в состав кожи, соединительных тканей, хрящей, скелета, волос, рогов и т.д. Как правило, в обычных условиях они химически инертны, не растворяются в воде и выполняют структурную или защитную функцию. Глобулярные белки играют активную роль в метаболизме, участвуя во всех процессах жизнедеятельности организма. Многие глобулярные белки растворимы в воде. Четкой структурной или функциональной границы между двумя классами белков, однако, провести нельзя. Например, миозин (белок мышц), хотя и имеет волокнистое строение, тем не менее химически не инертен. Функция миозина связана с превращением химической энергии в механическую работу. Несмотря на значительную условность, предложенная Астбери и сохранившаяся до сих пор классификация белков по структурному признаку остается все еще целесообразной. Сама идея разделения белков в зависимости от топологии структуры хорошо согласуется с одной из задач молекулярной биологии, а именно с установлением связи между строением (в том числе пространственным) и функцией биологических молекул. У. Астбери были изучены структуры разнообразных фибриллярных белков [13, 14]. Оказалось, что эти белки по структурному признаку могут быть разделены на две конформационные группы. Первая группа, названная по начальным буквам входящих в нее белков группой к.т.е.Г., включает такие белки, как кератин (белок волос, шерсти, ногтей и т.д.), миозин (белок мышц), эпидермин (белок кожи) и фибриноген (белок плазмы крови). Во вторую группу фибриллярных белков (группа коллагена) входят белки сухожилий, соединительных тканей, хрящей и др. Белки каждой группы имеют близкие картины рентгеновской дифракции, что указывает на их конформационную аналогию. [c.11]

    Мясо — это в основном мышечный белок. Мышцы представляют собой пучки белковых волокон, которые собраны в блоки, окруженные соединительной тканью. Соединительная ткань тоже содержит структурные белки, в частности коллаген и эластин. Коллаген образует белые волокна , жесткие и неэластичные эластин образует эластичные желтые волокна . Мясо можно сделать более пригодным для пережевывания, другими словами, более мягким, предварительно расщепив некоторые из белков соединительной ткани и некоторые из мышечных волокон. При этом волокна укорачиваются, легче отделяются друг от друга и поэтому легче разрушаются. [c.89]

    Гладкие мышцы по своим свойствам сушественно отличаются от скелетных расположение сократительных белков в них не упорядочено, размеры волокон меньше. Возбудимость гладких мышц значительно ниже, чем поперечнополосатых, а период мышечного сокращения длиннее. Гладкие мышцы обладают высокой способностью к автоматической деятельности. Раздражителями, возбуждающими автоматическое сокращение, являются продукты обмена веществ, вырабатываемые в мышце или доставляемые кровью. Мышечная ткань анизотропна и обладает упругими и вязкими свойствами. Вязкость обусловлена в основном миофибриллами, а упругость — соединительной тканью. [c.73]

    Авитаминоз проявляется в нарушении процессов обмена в скелетных мышцах уменьшается количество сократительного белка миозина и увеличивается количество коллагена в соединительной ткани, что влияет на сократительную способность мышц ухудшается энергетика мышц за счет уменьшения содержания гликогена, креатинфосфата и АТФ. [c.112]

    Синтез глюкозы из аминокислот в организме человека происходит практически постоянно, но особенно усиливается при голодании, преимущественно белковом питании и некоторьгх патологических состояниях (сахарный диабет). При голодании источником аминокислот для глюконеогенеза служат белки мышц, печени, соединительной и ряда других тканей. [c.412]

    Фибриллярные белки представляют собою вытянутые молекулы, у которых длина значительно превышает их диаметр. К таким белкам прежде всего необходимо отнести коллаген - самый распространенный белок у человека и высших животных, на долю которого приходится 25-30% от общего количества белков организма. Коллаген обладает высокой прочностью и эластичностью. Этот белок широко распространен в организме, он входит в состав соединительной ткани, и поэтому его можно обнаружить в коже, стенках сосудов, мышцах, сухожилиях, хрящах, костях, во внутренних органах. [c.8]


    Во-вторых, лизин необходим для синтеза самого распространенного в организме белка - коллагена. Этот белок обладает высокой прочностью и эластичностью. Он входит в состав соединительной ткани, и поэтому его можно обнаружить в коже, в стенках сосудов, в мышцах, сухожилиях, хрящах, костях, во внутренних органах. В мышцах коллаген выполняет важную роль в процессе расслабления, которое, в свою очередь, определяет скоростные качества спортсмена. В процессе синтеза коллагена вначале образуется его предшественник - проколлаген, содержащий в большом количестве аминокислоты лизин и пролин. Затем эти аминокислоты, входящие в состав проколлагена, подвергаются окислению и превращаются соответственно в оксилизин и оксипролин, что приводит к переходу проколлагена в коллаген. Это окисление протекает с участием аскорбиновой кислоты - витамина С. [c.209]

    Белки вездесущи в живой материи. Фибриллярные белки образуют строительный материал животных — кожу, мышцы, соединительную ткань, волокна шелка и т. д. Растворимые, или глобулярные, белки играют решающую роль во всех жизненных процессах как ферменты, нромежуточные продукты метаболизма, генетические факторы, определяющие отличительные признаки и т. д. Растворимые белки подразделяются в соответствии с их свойствами растворимости. Обычно определяются шесть грунн 1) альбумины, растворимые в чистой воде 2) глобулины, растворимые в разбавленных солевых растворах, но не в воде 3) глутелины, растворимые в разбавленных кислотах и щелочах 4) нроламины, растворимые в 80%-ном спирте, ноне в воде  [c.590]

    Некоторые авторы (Гауровиц) предпочитают рассматривать белки соответственно тем функциям, которые они выполняют в организмах. Несмотря на то что часто один и тот же белок выполняет различные функции — имеет несколько специальностей , такой принцип классификации кажется более логичным. К первой группе по этой классификации относят белки плазмы крови, молока, яиц, семян, альбумины, протамины, содержащиеся в рыбах (основные белки), и гистоны, входящие в состав ядер клеток. Ко второй группе относят структурные белки, образующие соединительную ткань, мышцы, эпидермис. Они выполняют роль каркаса для клеточных и надклеточных структур. Этим белкам свойственны отнюдь не только механические функции, но все же механическая роль для них специфична. [c.60]

    Резервные белки — это не депо, а при необходимости легкомо-билизуемые белки плазмы крови, мышц, соединительной ткани. [c.244]

    Фибриллярные белки представляют собой вытянутые молекулы. Такие белки входят в состав соединительных тканей, мышц и волос. Аминокислотные цепи в фибриллярном белке обычно находятся в виде винтовых спиралей, ориентированных параллельно друг другу. Отдельные спирали удерживаются как единое целое возникающими между ними водородными связями (рис. 28.2). По-видимому, при сжатии и растяжении мышц происходит перестройка водородных связей. Помимо водородных связей, между полипеп-тидными цепями существуют также электростатические силы притяжения, а иногда серные мостиковые связи, но число водородньгх связей намного превосходит все другие типы связывающего взаимодействия между спиралями. [c.483]

    Хотя структура кожи весьма различна, в зависимости от сорта и части кожи, некоторые обобщения все же возможны. Кожа делится на две различные части тонкий наружный слой — эпидермис, составляющий примерно около 1% общей толщины, и внутренний слой соединительной ткани — дерму или кориум. В кожах, поступающих для дубления, может быть и третий слой, содержащий оболочки сухожили и даже мышцы, которые относятся собственно к телу животного. Наружный слой, или эпидермис, представляет собой тонкий слой клеток, которые получают свое питание из кровеносных сосудов дермы. В то время как эти клетки воспроизводятся, старые постепенно отлшрают, высыхают, превращаются в чешуйки и легко отпадают. Через этот слой проходят волосы, растущие со дна волосяных мешочков, или фолликул, Потовые и сальные железы, выделяющие жир и пот через поры, также проходят через эпидермис. Дерма состоит из сетки плотно переплетающихся и, до некоторой степени, сросшихся волокон белка — коллагена. Кровеносные сосуды, нервы и жировые клетки расположены всюду в этой сетке из волокон, тогда как белковая соединительная ткань, называемая эластином, располагается главным образом в верхней и нижней части дермы. Находящийся под эпидермой кориум плотен и химически устойчив, образуя основу зернистой поверхности кожи. Поведение различных слоев кожи по отношению к различным химическим [c.382]

    Белки выполняют многие биологические функции. Например, некоторые нз них, называемые структурными белками, являются важными элементами волос, шерсти, шелка, перьев, соединительной ткани и мышц. Нуклеопротсины, образующие комплек- [c.383]

    V. В солевом экстракте мышцы открыть присутствие белка (миозина или актомиозина). Установить границы высаливан я миозина (см. работу 148), осаждаемость миозина при диализе солевого экстракта и при разведении его водой, установить границы высаливания хлористым натром. Проделать с раствором миозина цветные реакции на белковые аминокислоты. Остаток ткани после извлечения солевым раствором содержит белки стромы мышечного волокна и белки соединительной ткани. [c.237]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]

    Легко подвергаются перевариванию в желудке водорастворимые белки мышц, миозин, актин, а также яичный белок, альбумины и глобулины животного и растительного происхождения. Медленно поддаются воздействию пепсина белки соединительной ткани — коллаген, эдастин. Совершенно не перевариваются в желудке кератины волос и шерсти. Не расщепляются пепсином сравнительно несложные по своей химической структуре и богатые диаминомонокарбоновыми кислотами белки — протамины. [c.335]

    Структурная единица скелетной мышцы — мышечное волокно—много ядерная клетка длиною в несколько сантиметров, диаметром в 0,2—0,1 мм. Внутри волокна, в саркоплазме, расположены в виде пучков нитей миофиб-риллы —сократительные элементы мышечного волокна. Л1иофибриллы обладают видимой под микроскопом попереч1юй исчерченностью, зависяш,ей от оптической неоднородности входящих в их состав белковых веществ. Мышечное волокно покрыто соединительнотканной оболочкой — сарколеммой. Из мышечных волокон состоят мышечные пучки, содержащие некоторое количество соединительной ткани. Обычно химический состав мышцы изучается не в отдельно взятых ее микроскопических элементах, а в общей массе. Для полного представления о составных частях мышечных волокон учитывают содержание в мышце белков соединительной ткаии. [c.542]

    Повреледения двигательных нервов, перерезка сухожилий вызывают атрофию дтышц, сон])овождающуюся уменьшением их веса и перерождением мышечной ткаии. В мышцах увеличивается содержание соединительной ткани и уменьшается содержание белков, входящих в состав мышечных волокон. Работоспособность мышц, по мере развития дистрофии, снижается благодаря наступающим изменениям в химическом составе мышц и в процессах обмена веществ в них. [c.555]

    Система электромеханического сопряжения мышцы. Поперечно-полосатая скелетная мьппца состоит из продольных пучков мышечных волокон с характерным угловатым поперечным сечением. Ширина мьппечных волокон варьирует от 10 до 100 мкм, а длина часто соответствует длине мышцы, достигая в некоторых волокнах 12 см. Всю мышцу окружает тонкий чехол соединительной ткани, которая отделяет пучки мышечных волокон друг от друга и участвует в присоединении их концов к сухожилиям. Мышечное волокно (рис. XXV.1) представляет собой сложную многоядерную клетку, содержаш ую одну-две тысячи более тонких вытянутых волоконец (миофибрилл) диаметром 1-2 мкм, состояш их из элементарных сократительных единиц — саркомеров. Толстые и тонкие нити саркомеров образованы из сократительных (миозин и актин) и Са -чувствительных регуляторных белков (см. 3 этой главы). Функциональная активность белков сократительной системы зависит от концентрации ионов Са внутри саркомера. Быстрое и эффективное [c.225]

    Мышечная и соединительная ткани еще более устойчивы к действию ионизирующей радиации, чем почки. Слабая мышечная атрофия наблюдается при облучении в дозах, превышающих 50 Гр, а выраженные морфологические изменения (геморрагия, некрозы) еще при более значительных дозах радиации. Функциональные и биохимические изменения могут быть обнаружены и при развитии желудочно-кишечного синдрома, однако они выражены слабо. Так, в дозе облучения 10 Гр происходит незначительное снижение тонуса, работоспособности мышц и увеличение времени релаксации наблюдается тенденция к периодическим изменениям (или слабое снижение) таких биохимических показателей, как обмен фосфорных соединений, фосфорилазная, сукцин-дегидразная, цитохромоксидазная активность, содержание гликогена в скелетной мышце и др. Известно, что мышцы служат донаторами белков, фосфорных и пр. веществ для других органов в межтканевом обмене организма, поэтому изменения, происходящие в мышцах облученных животных, не могут совсем не сказываться на общей картине лучевой патологии. То же следует сказать и о соединительной ткани, проницаемость которой повышается спустя несколько дней после облучения животных в летальных дозах и может продолжаться в течение двух-трех недель. Повышение проницаемости связывают с радиационным повреждением основного соединительнотканного вещества, фибробластов, с повышением скорости распада мукополисахаридов, с уменьшением тучных клеток в коже. Ионизирующая радиация может оказывать прямое действие на основное вещество, вызывать деполимеризацию гиалуроновой кислоты, снижать вязкость мукополисахаридов волокон соединительной ткани кожи. [c.201]

    Существует несколько основных типов тканей а) эпителиальная ткань — это ткань, которая входит в состав поверхности тела и внутренних органов животных и человека кожа, пищеварительный канал, кровеносные сосуды, железы (внутренней секреции, потовые, жировые), некоторые органы чувств и др. Эпителий по форме клеток делится на цилиндрический и плоский б) соединительная ткань (жировая, хрящевая и костная). Эти ткани имеют много межклеточного вещества, особенно белков коллагена и эластина в) мышечная ткань — исчерченные (поперечно-полосатые) и неисчерченные (гладкие) мышцы (часто отдельно рассматривается сердечная мышца) г) нервная ткань состоит из нейронов и глиальных клеток д) кровь можно рассматривать как ткань пятого типа (хотя это и вызывает иногда возражение гистологов). В состав крови входят следующие клетки эритроциты, лейкоциты (гранулоциты, лимфоциты и моноциты) и тромбоциты. Следует отметить, что большинство данных о плазматической мембране получены как раз на эритроцитах — крупных клетках, удобных для получения так называемых теней эритроцитов. Тень эритроцита — это плазматическая мембрана клетки без внутриклеточного содержимого. [c.83]


Смотреть страницы где упоминается термин Белки мышц и соединительных тканей: [c.247]    [c.436]    [c.131]    [c.198]    [c.395]    [c.240]    [c.73]   
Смотреть главы в:

Биоорганическая химия -> Белки мышц и соединительных тканей




ПОИСК





Смотрите так же термины и статьи:

Белки соединительной ткани

Мышца



© 2025 chem21.info Реклама на сайте