Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства химических элементов и их соединений Тема. 1. Водород и кислород

    Таким образом, Берцелиус указывает на невозможность деления химических элементов в свободном состоянии на электроотрицательные и электроположительные, так как в зависимости от того, с чем тот или иной элемент реагирует или даже в зависимости от того, с каким химическим элементом его сравнивают, он может проявлять себя как электроположительным, так и электроотрицательным. Например, сера может быть электроположительной по отношению к кислороду и электроотрицательной но отношению к металлам [23, стр. 510]. Интересны в этом отношении и высказывания Берцелиуса о положении водорода в электрохимическом ряду. Он считает, что этот элемент не может быть отнесен ни к электроположительным, ни к электроотрицательным, а займет положение между ними, так как его кислородное соединение обладает и теми и другими свойствами. ч< Водород, — пишет он, — стоит на грани электроположительных и электроотрицательных элементов так, что нельзя определить, к какому классу он преимущественно принадлежит [22, стр. 101]. Относительность свойств, как указывает Берцелиус, присуща не только атомам химических элементов, по и сложным веществам. Примером таких веществ является вода, которая, по его мнению, как пишет Э. Мейер [24], в кислотных гидратах играет роль слабой электроположительной, а в гидроокисях металлов — слабой электроотрицательной составной части. Гидрат серной кислоты и гидроокись меди он рассматривал как Н О З Ог и СиЮ ЩО. Берцелиус впоследствии приходит к вы- [c.227]


    Такие вещества, которые обнаруживают близкие химические свойства и различаются между собой только по своему углеводородному радикалу, Жерар назвал гомологами. Он писал Существуют углеродистые соединения, выполняющие те же химические функции, следующие тем же законам метаморфоз и содержащие то же самое количество элементов водорода, кислорода, хлора, азота и т. д., увеличенных или уменьшенных на п раз СНг. Я называю их гомологическими телами  [c.160]

    Применение изотопов в качестве меченых атомов основано на тождестве химических свойств изотопных разновидностей молекул. Однако полного тождества никогда не бывает и во многих случаях имеет место различие в скоростях реакций, вызванное изотопным замещением. Этот так называемый кинетический изотопный эффект проявляется тем резче, чем меньше атомный вес элемента, и должен учитываться, особенно при использовании изотопов водорода и таких легких элементов как углерод, азот и кислород. Его мерой служит отношение констант скоростей реакций с участием легкого и тяжелого соединения к к. [c.627]

    Впервые понятие о валентности было введено в химию английским химиком Франклендом в 1853 г. Под валентностью, или атомностью, данного элемента он понимал число атомов другого соединяющегося с ним элемента. Если принять валентность водорода равной единице, валентности других элементов определяются как число атомов водорода, соединяющееся с одним атомом рассматриваемого элемента. Франклендом была обнаружена трехва-лентность азота, фосфора, мышьяка и четырехвалентность (вместе с А. Кольбе) углерода. В дальнейшем представления о валентности сыграли исключительно важную роль в теории химического строения Бутлерова и создании Периодической системы химических элементов Менделеева. Это свойство зависит от состояния атомов рассматриваемого элемента, природы партнера, с которым реагирует данный элемент, условий взаимодействия. Так, углерод с одним и тем же партнером — кислородом в зависимости от условии взаимодействия образует СО2 и СО, в которых состояния атомов углерода различны. На основе валентности элементов легко определить формульный состав химического соединения. Поэтому величину валентности часто называют стехиометрической валентностью. [c.74]

    Твердые углеводороды метанового ряда носят название парафинов. Поэтому нефти, содержащие в значительном количестве метановые углеводороды, называются парафинистыми нефтями. Основными химическими элементами, образующими нефть, являются углерод и водород. В большинстве нефтей содержание углерода колеблется в пределах 84—85%, а содержание водорода в пределах 12—147о- Кроме водорода и углерода, в состав нефти входят другие элементы кислород, сера, азот. Хотя этих элементов и их соединений обычно содержится немного, но тем не менее они оказывают значительное влияние на свойства нефти. Важнейшими представителями кислородных соединений нефти являются нафтеновые кислоты, с увеличением содержания которых обычно повышается плотность нефти и нефтяных продуктов. [c.25]


    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]

    RHg (NH3, РН3 И др.) ионы элементов отрицательно 3-валентны. Благодаря такому сравнительно большому отрицательному заряду связь атомов этих элементов с ионами водорода значительно прочнее, чем у элементов группы кислорода и тем более группы галогенов. В связи с этим водородшае соединения элементов подгруппы азота в водных растворах не образуют свободных ионов водорода, и эти растворы но обладают кислотными свойствами. Это обстоятельство отражают и в написании химических формул этих веществ. Так, обычно пишут NHg, а не HgN (кислотный водород обычно пишут на первом месте), тогда как пишут H I, а не СШ, HjS, а не SHa и т. д. [c.261]

    Несмотря на полноту изложения фактического материала, все же можно указать некоторые пробелы. Так, не охарактеризованы комплексные соединения с молекулярным водородом, кислородом и азотом в качестве лигандов недостаточно подробно описаны клат-ратные соединения, гидраты газов, в частности гидраты инертных газов не четко описана химическая сторона окислительно-восстановительных реакций и др. Вместе с тем каждый элемент и его соединения представлены в такой форме, что это дает полную характеристику его химических свойств. [c.6]

    Представление о валентности как величине, постоянной для каждого данного элемента, долгое время оправдывалось в органической химии, где, за редким исключением, углерод четырехвалентен, водород одновалентен, кислород двухвалентен. Но данные неорганической химии определенно указывали, что такие химические элементы, как азот, сера, фосфор, хлор, железо и др., проявляют в соединениях различную валентность (например, оказалось, что в НС1 хлор одновалентен, а в H IO4— семивалентен). Чем больше накапливалось подобных фактов, тем отчетливее выяснялось, что валентность в общем не является свойством, присущим отдельным атомам, а зависит от природы соединяющихся атомов и от тех химических и физических условий, при которых происходит взаимодействие атомов [10]. [c.192]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Водородная связь. Атом водорода в соединениях с кислородом, азотом, фтором, хлором, иногда серой и фосфором обладает способностью связывать не один, а два атома этих элементов. С одним из них водород связывается прочной химической (ковалентной) связью, а с другим - менее прочной, так называемой водородной связью. Возмомаюсть образования такой Н-связи обусловливается тем, что атом водорода содержит всего один электрон отдав свой единственный электрон для образования прочной химической связи, ядро водорода с диаметром в тысячи раз меньше диаметров остальных атомов приобретает способность подойти исключительно близко к другим атомам молекул, не вызывая при этом сил отталкивания, и вступить во взаимодействие с их электронами. Прочность Н-евязи зависит от свойств тех атомов, между которыми находится атом водорода, и обычно составляет 8-40 кДж/моль против 8 -12 кДж/моль обычной Ван-дер-Ваальсовой связи (но на порядок слабее ковалентной связи). [c.26]


    Упомянутая работа Дэви послужила основанием для А. Авогадро [4] расположить большое число химических соединений в ряд по их кислотности и щелочности. Чем дальше друг от друга находятся в этом ряду два вещества, тем большим химическим сродством друг к другу они обладают. Но этот ряд, согласно Авогадро, следует пополнить и веществами, которые нельзя считать кислотами или щелочами. На первом месте у Авогадро стоит кислород, а остальные тела ( orps) располагаются в порядке возрастания их сродства к кислороду. Водород, по мнению Авогадро, должен быть помещен где-то в конце ряда. При контакте двух тел, утверждает Авогадро, ссылаясь на гипотезу Дэви об идентичности сродства и электрического действия , кислота заряжается отрицательно, а щелочь — положительно, что благоприятствует их соединению друг с другом. То же можно сказать и о других телах, способных к соединению, как например о кислороде и водороде. Основываясь на этом свойстве, легко расположить в ряд различные вещества, поскольку электрическая разноро(днооть, которая проя]вляется в более или менее сильной электризации двух тел, при контакте становится мерой антагонизма, или химического сродства, между этими телами [4, стр. 146]. Таким образом, Авогадро предложил по сути распределять в ряд вещества по их склонности к присоединению или к отдаче электричества, он только не ввел соответствующих терминов и не дал в явном виде таблицы , хотя из его высказываний в той же статье следует, нанример, что по своей кислород-ности, элементы раонределяютоя в ряд [c.237]

    Шееле считал, что главная цель и задача химии заключается в том, чтобы разлагать вещества на составные части, изучать их свойства и различными способами соединять вещества вместе [28]. Шееле открыл многие органические кислоты винную (1769 г.), мочевую (1776 г.), молочную (1780 г), лимонную (1784г.), галловую (1786 г) из оливкового масла он выделил глицерин (1783 г.). При действии на глицерин азотной кислотой Шееле получил щавелевую кислоту, которую ранее он же обнаружил при окислении сахара азотной кислотой. Полученная Шееле щавелевая кислота оказалась тождественной кисличной кислоте, выделенной несколькими годами ранее Виглебом. Из красителя берлинская лазурь Шееле получил синильную кислоту. Полное собрание сочинений по физике и химии Шееле было опубликовано на немецком языке в Берлине в 1793 г. [29]. Примерно в то же время Лавуазье установил, что основными составными частями органических соединений являются углерод, водород и кислород. Эти качественные определения он дополнил количественными, заложив тем самым основы элементного анализа. Используемые им приемы были очень просты, но результаты оказывались достаточно хорошими. Это дало Лавуазье возможность сделать первые теоретические обобщения. Он обратил внимание на то, что в органических веществах группы атомов ведут себя как элементы, т. е. при химических превращениях не разлагаются на составные части. Такие группы Лавуазье назвал радикалами. Лавуазье, например, представлял себе органические кислоты как оксиды сложных радикалов .  [c.51]

    Много работ, основой которых служит экспериментальный материал по химическому равновесию. Теми или иными методами (тензиметрическим, методом э. д. с., методом равновесия с окислительно-восстановительными смесями) изучены процессы восстановления водородом — окислов [7067— 70911, сульфидов [7092—71011, галогенидов [7102—71061, карбидов [Л 07—7113] и кислородсодержащих солей [7114—7123, 7126, 7127] углеродом — окислов [7128—7143] и других веществ [7144—7151] окисью углерода — окислов [7152—7166], сульфидов [7166—7169] и кислородсодержащих солей [7170 — 7180]. К ним надо присоединить системы, содержащие различные окислы, как простые [7181—71851,7187—72631, так и смешанные (твердые растворы) [7264—72931, сульфиды — индивидуальные [7294—7345] и бинарные [7346—7350], а также селе-ниды [6457, 7351—7362] и теллуриды [7363—7374]. Работы [7375—7391] и [7392—7447] относятся соответственно к гало-генидам и их смесям. В число последних входят и работы [7424—74471, посвященные масс-спектрографическому исследованию термодинамических свойств бинарных систем, образованных фторидами металлов. В них разработана методика определения состава и давления пара в этих системах. Были изучены также системы, содержащие карбиды [7448—7467], силициды [7468—7475], нитриды [7476—7483], фосфиды [7484—7491], арсениды [7492— 7499], стибниды [7500—7508], гибриды [7509—7511], соединения металлов с различными элементами [5182, 7510—7517] и друг с другом [7518—7548]. Кристаллогидратам посвящены работы [7549—7570], термической диссоциации различных веществ [7571—7601]. В [7602—7632] изучены процессы взаимодействия с различными веществами, в [7633—7652] реакции окислов с разнообразными соединениями, в [7653—7660] реакции с кислородом, в [7661—7676] с сульфидами, в [7677—7680] с хлоридами. Работы [7681—7690] освещают реакции диспропорцио- ироваиия, а [7691—77181 водосодержащие системы. [c.60]

    В органических соединениях двуатомных элементов углерод, ча-стию сродства соединенный с двуатомным элементом, другой частию сродства обыкновенно бывает соединен с элементами одноатомными, преимущественно — с водородом, иногда же с водородом и галоидом. Согласно этому, соответственно каждому порядку углеродных соединений, заключающих двуатомный элемент и водород, могут существовать е1це, так же как для углеводородов, галоидные производные, к которым примкнут производные нитрованные, содержащие группу (N03). — Затем, углеродистые соединения двуатомных элементов, по натуре этих последних, распадаются на кислородные и сернистые Как те, так и другие могут быть подвергнуты дальнейшему делению по количеству паев двуатомного элемента, по химическому строению и проч. Например, в кислородных соединениях кислород действует на углерод или половиною своего сродства, между тем как другая насыщена водородом, или всем сродством своим. В соединениях перводо рода (в гидратных телах) будет, следовательно, заключаться водяной остаток (Н О " ). В то же время простой радикал, т. е. группа,состоящая из соединенных между собою паев угля, с прямо к ним присоединенными паями других элементов, может состоять или только из угля и водорода, или из угля, водорода и кислорода, соединенного с углем обеими единицами своего сродства.— Таким образом, гид-ратные соединения распадутся на тела с углеводородными простыми радикалами, или алкоголи, и тела с окси-углеводородными (содержащими кислород) простыми радикалами, или кислоты. Количество водяных остатков, или, что все равно, атомность простых радикалов, с которыми эти водяные остатки соединены, придает телам, с своей стороны, определенные свойства и ведет к делению алкоголей и кислот на одноатомные, двуатомные, трехатомные и т. д. Наконец, количество кислорода, присоединенного к углю обеими единицами сродства (находящегося в простом радикале), послужит основанием дальнейпшго подразделения груины кислот. [c.70]


Смотреть страницы где упоминается термин Свойства химических элементов и их соединений Тема. 1. Водород и кислород: [c.216]    [c.136]    [c.460]    [c.127]    [c.458]    [c.121]    [c.541]    [c.251]    [c.97]    [c.77]    [c.78]    [c.440]    [c.11]    [c.258]    [c.14]   
Смотреть главы в:

Неорганическая химия -> Свойства химических элементов и их соединений Тема. 1. Водород и кислород




ПОИСК





Смотрите так же термины и статьи:

БГК и кислорода и водорода

Водород свойства

Водород соединения

Кислород свойства

Соединения кислорода

Тема 3. Кислород

Хай-Темя

Химическое соединение

Элемент химический

Элементы II соединения

Элементы свойства



© 2025 chem21.info Реклама на сайте