Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс транскрипции у эукариот

    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]


    Регуляция синтеза белков в клетках эукариот намного сложнее не характерна прямая субстратная регуляция, так как опероны (транскриптоны) имеют обширные регуляторные зоны структурные гены разбросаны по геному в ядрах дифференцированных клеток эукариот большинство генов находится в репрессированном состоянии все структурные гены делят у эукариот на три группы — гены, функционирующие во всех клетках организма, в тканях одного типа, в специализированных клетках одного типа пространственное разделение процессов — транскрипция в ядре, трансляция в рибосомах. [c.319]

    Регуляция экспрессии активности генов у эукариот осуществляется значительно более сложным путем, поскольку процессы транскрипции и трансляции разделены не только пространственно ядерной биомембраной, но и во времени. Эта регуляция базируется как минимум на 6 уровнях сложных биологических процессов, определяющих скорость синтеза и распада генетического продукта (рис. 14.14). [c.538]

    Клетки эукариот богаты различными органеллами. Прежде всего это клеточное ядро, в котором происходят все процессы с участием ядерной ДНК, входящей в состав хроматина, в первую очередь процессы репликации, репарации и транскрипции. Даже в пределах ядра имеется распределение процессов между отдельными его частями. Наиболее четко это выражено в случае синтеза рибосомных РНК и формирования рибосом. Участки хроматина, содержащие гены рибосомных РНК, находятся в виде петель хроматина в определенной области ядра, называемой ядрышком. Здесь происходит их транскрипция с помощью РНК-полимеразы I и первые фазы формирования рибосом. Рибосомные белки, необходимые для сборки рибосом, поступают из цитоплазмы, в которой сосредоточено их производство. [c.432]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Регуляция синтеза белка у эукариот. Это более сложный процесс, так как транскрипция и трансляция происходят в разных компартментах и обеспечиваются большим количеством соответствующих структур. [c.473]


    Как можно представить себе эволюционное происхождение этих фундаментальных различий Не исключено, что генетическая структура современных эукариот отражает наиболее древнюю структурную организацию, которая послужила также эволюционным предком и сегодняшних прокариотических организмов, например таких, как Е. соИ. Эволюция бактерий могла быть ответом на возникшие селективные условия, благоприятствовавшие быстрому росту и клеточному делению. Эволюционные преимущества в таких условиях могли оказаться достигнутыми благодаря слиянию ядра с цитоплазмой и сопряжению процессов транскрипции и трансляции. Это могло в конце концов привести и к выщеплению интронов, присутствие которых препятствовало бы правильной трансляции первичных транскриптов. [c.60]

    Процесс транскрипции у эукариот [c.41]

    Пока еще не выяснено, как развиваются события после падения уровня циклического АМР, но в конце концов они приводят к активации белкового комплекса, называемого фактором инициации М-фазы (ФИМ) полагают, что он необходим для выхода из профазы I мейоза. В гл. 13 говорилось о том, что ФИМ крайне мало изменился в процессе эволюции эукариот. Его ключевая роль в обычном цикле клеточного деления обусловлена тем, что он инициирует переход клетки из G2 в М-фазу (см. разд. 13.1.10). Как уже упоминалось, профаза I мейоза, несмотря на свое традиционное название, очень похожа на фазу G2 обычного клеточного цикла ДНК уже реплицировалась и является активной в отношении транскрипции, ядерная оболочка интактна, а митотическое веретено деления еще не сформировалось. Более того, подобно переходу из G2 в М-фазу обычной делящейся клетки, переход от профазы I к М-фазе мейоза запускается ФИМ. В действительности ФИМ был впервые обнаружен в ооцитах лягушки в качестве фактора, инициирующего созревание. Зрелые ооциты лягушки задерживаются на стадии метафазы II, когда уровень ФИМ высок (см. далее). Если небольшую часть цитоплазмы такого зрелого ооцита ввести в незрелый ооцит, то под воздействием содержащегося в инъекции ФИМ нарушится целостность мембраны и начнется конденсация хромосом, т. е. будут наблюдаться эффекты, характерные для М-фазы и свидетельствующие о зрелости ооцита. [c.33]

    Двухнитевые РНК-геномы встречаются как у вирусов эукариот, так и у вирусов прокариот. Системы репликации / транскрипции у разных представителей этой группы вирусов могут заметно различаться. Рассмотрим, как эти процессы осуществляются у реовирусов (рис. 173). [c.328]

    Итак, регуляция транскрипции у эукариот -это очень сложный процесс. Структурный ген может иметь множество регуляторных элементов, которые активируются специфическими сигналами в клетках разного типа в разное время клеточного цикла. Однако некоторые структурные гены находятся под контролем уникального фактора транскрипции. Специфические белки могут взаимодействовать с определенными регуляторными элементами и блокировать транскрипцию или связываться со всем транскрипционным комплексом еще до инициации транскрипции или во время элонгации. [c.47]

    В-третьих, ДНК транскрибируется, и транскрипция различных генов тонко регулируется, в частности, на различных стадиях клеточного цикла и в процессе дифференцировки многоклеточных организмов. Гистоны, связанные с ДНК, влияют на этот процесс, они должны или удалять. я с ДНК в момент транскрипции, или каки.м-то иным способом ппопускать РНК-полимеразу. Механизмы узнавания белками определенных последовате тьностей ДНК у эукариот изучены в горазло меньшей степени, чем у прокариот. Возможно, у эукариот важную роль в этом процессе играют белок-белковые взаимодейств 1я. Многие эукариотические гены подчиняются нескольким различным регуляторным сигналам, поэтому их система регуляции весьма сложна и наверняка включает несколько белков. [c.234]

    Молекулярные события, лежащие в основе репликации и транскрипции в клетках прокариот и эукариот, в своих главных чертах достаточно однотипны. Значительно более разнообразны варианты протекания этих процессов при воспроизводстве генетического материала вирусов. В данном параграфе рассматриваются некоторые наиболее существенные и широко представленные в мире вирусов особые пути протекания Матричного биосинтеза нуклеиновых кислот. Вследствие самой природы вирусов эти процессы протекают в клетках хозяина, инфицированных вирусами. [c.193]

    Накопление, передача и экспрессия (выражение в фенотипе) генетической информации составляют основную тему части IV. В начале описьгоаются эксперименты, показывающие, что ДНК является генетическим материалом, а также история открытия двойной спирали ДНК. Затем следует описание ферментативного механизма репликации ДНК. Далее мы перейдем к экспрессии генетической информации, заключенной в ДНК, начав с описания данных о роли информационной РНК как промежуточного переносчика информации. Затем рассматривается процесс транскрипции, т. е. синтез РНК в соответствии с инструкциями, заключенными в матричной ДНК. Из этого логически вытекает описание генетического кода, т.е. взаимосвязи между последовательностью оснований в ДНК (или в транскрибируемой с нее информационной РНК) и последовательностью аминокислот в соответствующем белке. Генетический код, общий для всех живых организмов, прекрасен своей простотой. Три основания составляют кодон-единицу кода, соответствующую одной аминокислоте. Кодоны в информационной РНК последовательно считываются молекулами транспортных РНК, которые выполняют роль адапторов в син-тезе белка. Далее мы переходим к механизму белкового синтеза, а именно к процессу трансляции, в ходе которого четырехбуквенный алфавит нуклеиновых кислот, в котором каждая буква представлена соответствующей парой оснований, переводится в 20-буквенный алфавит белков. Трансляция происходит на рибосомах и обеспечивается координированным взаимодействием более чем сотни различных высокомолекулярных соединений. В следующей главе описывается регуляция экспрессии генов у бактерий, причем основное внимание уделяется оперо-нам лактозы и триптофана у Е. соН, как наиболее изученным в настоящее время. Далее обсуждаются результаты последних исследований экспрессии генов у более высокоорганизованных организмов (т.е. у эукариот), отличающихся от бактерий (прокариот) более высоким содержанием ДНК и наличием оформленного ядра, что обеспечивает диф-ференцировку клеток. Затем рассматри- [c.15]


    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    Описанный выше процесс транскрипции с одним основным ферментом - РНК-полимеразой - характерен для прокариот. У эукариот действуют три РНК-полимеразы I-PHK - полимераза находится в ядрышке, где она катализирует синтез рРНК, полимераза II в нуклеоплазме катализирует синтез мРНК, а полимераза III в нуклеоплазме катализирует синтез тРНК. [c.57]

    Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для их объяснения существует ряд гипотез. Предполагают, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры. С молекулой ДНК у эукариот связаны гистоны, поэтому считается, что именно эти белки выполняют роль репрессоров. Прямых доказательств их роли в качестве репрессоров не получено, хотя, как было показано, в клетках эукариот открыт класс регуляторных белков процесса транскрипции. Высказано предположение, что в ядре синтезируется высокомолекулярная молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму попадает только небольшая часть зрелой мРНК, а основная часть ее распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и соответственно траты огромной массы молекулы мРНК. [c.540]

    Однако при более тщательном подходе оказывается, что вопрос о топологической разобщенности процессов транскрипции и трансляции у эукариотов не так уж ясен. Во-первых, имеются данные о том, что некоторый синтез белка в ядре все же происходит. Примером таких данных могут псслужить наблюдения, показавшие, что изолированные ядра способны включать меченые аминокислоты в белок. Кроме того, радиоавто-графические исследования клеток, которые короткое время инкубировали с Н-аминсккслотами, свидетельствуют о том, что в ядрах таких клеток обнаруживаются меченые белки, причем они появляются там слишком рано, чтобы это можно было объяснить за счет синтеза их в цитоплазме и последующего перемещения в ядро в готовом виде. Во-вторых, опыты, в которых в РНК различных животных клеток вводили радиоактивную метку, показали, что значительная фракция вновь синтезированных молекул РНК вообще не попадает в цитоплазму, а разрушается в ядре вскоре после своего синтеза. Смысл этих наблюдений неясен, однако не исключено, что они отражают существование молекул мРНК, участвующих в синтезе (гипотетических) ядерных белков на (гипотетических) ядерных рибосомах. [c.507]

    В гл. 9 мы упоминали об образовании индивидуальных мРНК путем разрезания полицистронных РНК, образующихся в процессе транскрипции вирусов эукариот. В этом случае нам ясна цель получение моно-цистронных мРНК, которые могут быть транслированы. Однако нам ничего не известно о механизме этого процесса. [c.311]

    Еще одним примером положительной регуляции процесса транскрипции является регуляция с участием генов- энхансеров (от англ. enhan e — усиливать). Ранее считали, что этот тип регуляции характерен только для эукариот. Но в последнее время формально сходные механизмы обнаружены и у прокариот (табл. 7). [c.77]

    Другой пример относится к развитию фагов, в процессе которого наряду с изменением процесса транскрипции (см. гл. И) блокируется трансляция иРНК организма-хозяина. В некоторых случаях (у Es heri hia oli) это связано с модификацией рибосом, перестающих узнавать иРНК хозяина (т. е. блокируется инициация трансляции), однако у эукариот это обусловлено модификацией факторов элонгации, для чего имеются пJeциaльныe ферменты, осуществляющие фосфорилирование (в случае фактора EF-1) или ADP-рибозилирование (в случае фактора EF-2), что резко уменьшает сродство данных белков к рибосомам. [c.89]

    Механизмы трансляции гораздо сложнее процессов транскрипции. В то время как транскригщию обеспечивают десятки белков, для осуществления синтезд полипептида необходимы сотни специализированных белков. Только в рибосомах эукариот их 70-100, причем р/алая и большая рРНК выполняют роль каркаса, на котором осуществляется самосборка этих белков. [c.35]

    Рибосомы про- и эукариот обладают в общем очень сходными структурой и функциями. Тем не менее из-за различий в структуре и организации про- и эукариотических мРНК и из-за того, что процессы транскрипции и трансляции у эукариот являются сопряженными во времени и в пространстве, тонкие различия между рибосомами про- и эукариот имеются. Типичными прокариотическими рибосомами являются рибосомы Е. соИ, и поскольку их структура и функции изучены лучще остальных, мы используем эту модель в последующем обсуждении. Для сравнения мы остановимся на некоторых структурных особенностях рибосом эукариот. [c.142]

    Детальное исследование молекулярной организации генома высших эукариот, особенно млекопитающих, показало, что существенная часть генома, около 10 % общей массы ДНК, образовалась в результате интеграции в геном фрагментов ДНК, синтезирован-лых на РНК-матрицах в результате обратной транскрипции (рис. 118, а). Впервые подобный процесс был описан при исследовании ретровирусов, в геноме которых имеется ген, кодирующий обратную транскриптазу (ревертазу) (см. гл. ХИ1). В геноме млекопитающих, птиц, амфибий и насекомых обнаруживаются ретропо-зоны, представляющие собой внедрившиеся в геном ДНК-копии, синтезированные на разных типах клеточных РНК как на матрицах. Молекулярные механизмы ретропозиции не изучены, остается не установленным источник клеточной обратной транскриптазы. Не ясно, что служит затравкой для ревертазы возможно, это шпилька на З -конце РНК, образующаяся в результате комплементарных взаимодействий. Как будет видно, структура ретропозонов позволяет с уверенностью говорить об участии обратной транскрипции в процессе их образования. Таким образом, наряду с переносом информации от ДНК к РНК осуществляется и обратный процесс — возвращение ее в геном в виде ретропозонов. У млекопитающих ретропозоны составляют более 10 % ДНК следовательно, мощность встречного потока информации от РНК к ДНК может быть существенной, по крайней мере при оценке его во временном эволюционном масштабе. Различают разные типы ретропозонов. [c.222]

    В нетранскрибируемых последовательностях генома перед экзон-интронами открыты специфические участки, названные промоторами, а также энхансерами (повышающие уровень транскрипции) и силан-серами (ослабляющие уровень транскрипции). При взаимодействии с белками они выполняют функции регуляторных сигналов при транскрипции. Этот способ регуляции широко используется клетками эукариот как в процессах дифференцировки, так и при индукции репрессии (см. главу 14). [c.493]

    Поскольку ДНК хроматинВ на определенной фазе жизнедеятельности клетки должна удваиваться, а кроме того, на ней, как па матрице, должны синтезироваться новые молекулы РНК, то в тесном контакте с хроматином находится весь аппарат, принимающий участие в синтезе 1ювых молекул ДНК и РНК, а таюке весь аппарат, участвующий в исправлении повреждений, возникающих по тем или иным причинам в молекулах ДНК, т.е. весь аппарат репарации ДНК. Каждый из этих процессов — репликация, репарация и транскрипция ДНК в клетках эукариот — требует участия елого набора ферментов и вспомогательных белковых факторов. Поэтому полная картина функционирующего хроматина является исключительно сложной и во многих деталях еще не установленной. [c.111]

    Механизмы терминации транскрипции у эукариот до конца не изучены. По-видимому, вблизи З ОН-конца гена с РНК-полимеразой взаимодействует белковый стоп-сигнал, который замедляет (но не прекращает) транскрипцию. Далее фермент катализирует синтез последовательности ААУААА и следующие за ней 15 нуклеотидов, после чего завершает свою работу. В процессе отделения транскрипта от матрицы экзонуклеаза отщепляет терминальные 15 нуклеотидов, а фермент полиА — полимераза достраивает к последовательности ААУААА порядка 150—200 полиадениловых нуклеотидов (полиА). [c.460]


Смотреть страницы где упоминается термин Процесс транскрипции у эукариот: [c.122]    [c.72]    [c.315]    [c.116]    [c.379]    [c.94]    [c.101]    [c.120]    [c.101]    [c.120]    [c.85]    [c.113]    [c.132]    [c.256]    [c.94]    [c.222]    [c.234]    [c.490]    [c.46]    [c.47]    [c.400]   
Смотреть главы в:

Биохимия клеточного цикла -> Процесс транскрипции у эукариот




ПОИСК







© 2025 chem21.info Реклама на сайте