Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Узнавание белками нуклеиновых кислот

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]


    Следовательно, необходимо, чтобы состав белков мог меняться в широких пределах, так чтобы они узнавали различные субстраты и взаимодействовали с ними. Для некоторых белков требуется присутствие других соединений (небелковой природы) для участия в процессах узнавания и превращения. Такие соединения называются коферментами. Поэтому можно заранее сказать, что катализаторы белковой природы, или ферменты, должны обладать высокой степенью упорядоченности и организации. Кроме того, вся необходимая информация должна быть записана наиболее компактным образом. Такие упорядоченные биополимеры, с помощью которых работает и самовоспроизводится двигатель внутреннего сгорания клетки, также должны совершеиио точно воспроизводиться. Было установлено, что действие ферментов высокоспецифичио структуре субстратов. Следовательно, информация о молекулярной организации белков (ферментов) должна надежно храниться, будучи записанной на стабильном, относительно консервативном языке. И вот тут-то выходят на сцену нуклеиновые кислоты. Значит, существует еще одно соответствие [c.15]

    Как уже неоднократно отмечалось, фундаментальным свойством белков нуклеиновых кислот является их способность узнавать определенные низкомол кулярные соединения или другие полимеры. Результатом узнавания является образование стабильных комплексов с этими лигандами. Обычно это не приводит к изменениям химической структуры биополимера и позволяет неоднократно использовать эти же молекулы биополимера, если это узнавание влечет за собой какие-либо биологические последствия. В то же время отсутствие каких- ибо химических последствий означает, как правило, отсутствие каких-либо следов пребывания биополимера в виде комплекса р соответствующим лигандом. Между тем во многих случаях желательно, чтобы такой след остался для определения области биополимера, принимавшей участие в узнавании. В некоторых случаях желательно сделать это узнавание необратимым для того, чтобы повредить биополимер с соответствующими биологическими последствиями. Обе эти проблемы решаются благодаря подходу, известному как аффинная модификация (или аффинное мечение). [c.329]

    Жизнедеятельность клеток (и естественно, организма) во многом определяется структурой, физиологическими свойствами и функциональным состоянием их мембранных структур. Кроме обеспечения целостности и гетерогенности клетки мембраны принимают участие во всех физио-лого-биохимических процессах. Как справедливо отмечает акад. Е. М. Крепе, мембраны — это арена, на которой разыгрываются важнейшие биохимические, физические и химические процессы. Эти процессы проявляются в транспорте веществ, функционировании ферментативных комплексов, миграции энергии, синтезе белка, нуклеиновых кислот и делении клетки, восприятии энергии внешней среды и трансформации ее в энергию биологического возбуждения, передаче нервного импульса, дыхании, пищеварении, иммунитете, секреторной деятельности, узнавании и взаимодействии клеток и др. [c.9]


    Биологическая специфика процессов молекулярного узнавания определяется макромолекулярной структурой основных биологически функциональных веществ — белков и нуклеиновых КИСЛОТ- Важнейшее физическое свойство макромолекулы — ее [c.608]

    Ф. Крик считает, что нуклеиновые кислоты более примитивны, чем белки. Возникновение жизни должно быть обязательно связано с нуклеиновыми кислотами, где они играли первостепенную роль. Белки по сравнению с нуклеиновыми кислотами имеют более сложную структуру, состоят из многочисленных и разнообразных мономеров и, следовательно, обладают большими возможностями взаимодействия и регуляции. Однако эти свойства белка возникли не сразу, а образовались в процессе развития жизни. Нуклеиновые кислоты, несмотря на относительную примитивность, обладают уникальным свойством определять собственное воспроизведение, что является необходимым атрибутом всего живого. Примитивные комплементарные взаимодействия — узнавание и регуляция, могут осуществляться самими нуклеиновыми кислотами, и, видимо, они играли доминирующую роль на заре жизни. Развитие и усложнение этих функций связано уже с [c.290]

    Минимальный фермент сам по себе имеет сродство к ДНК в основе этого сродства лежит электростатическое взаимодействие между положительно заряженным белком и отрицательно заряженной нуклеиновой кислотой. Возможно, что способность к связыванию любой ДНК независимо от ее нуклеотидной последовательности-характерная особенность всех белков, имеющих специфические участки узнавания на ДНК (гл. 14). Случайная последовательность ДНК, которая связывается РНК-полимеразой, называется слабым участком связывания, а комплекс ДНК фермент закрытым, поскольку ДНК в этом комплексе находится в двухцепочечной форме. Константа связывания при формировании закрытого комплекса в участке слабого связывания составляет 2-10 М а полупериод диссоциации комплекса на фермент и ДНК-около 60 мин. [c.133]

    Одна из таких проблем — узнавание белками специфических последовательностей нуклеиновых кислот. Кажется, что рестриктазы II класса могут быть одной из лучших моделей для таких исследований. [c.3]

    Затем Эйген дает очень интересный анализ возможности эволюционного совершенствования, основанного на комплементарном узнавании только нуклеиновых кислот, и повторяет его для чисто белковых каталитических систем. Он приходит к выводу, что ни нуклеиновые кислоты, ни белки-ферменты не обеспечивают осуществления естественного отбора. Эйген рассматривает также систему, образованную нуклеиновыми кислотами и белками, в которой сочетается комплементарное инструктирование (матричное конвариантное воспроизведение в нашей терминологии) с каталитической связью. Эта система — само-воспроизводящийся гиперцикл — может эволюционировать, [c.40]

    Молекулярное узнавание является одним из наиболее фундаментальных свойств систем, с которыми имеют дело биохимики, и конкретные примеры комплементарных структур будут неоднократно приводиться в первую очередь при описании структуры нуклеиновых кислот и при рассмотрении механизма ферментативного катализа. Поэтому здесь приведен лишь один умозрительный пример структуры организованной для узнавания аминокислоты Ь-аспарагина. Эта аминокислота имеет несколько групп, которые могут участвовать во взаимодействии с узнающим ее белком,- заряженные амино- и карбоксильную группы и фрагмент СОШг, способный одной своей частью выступать в качестве донора, а другой — в качестве акцептора протона при образовании водородных мостиков. Поэтому [c.77]

    В большом числе случаев для функционирования белков и нуклеиновых кислот необходимо, чтобы несколько полимерных цепей были соединены в единый комплекс. В Случае чисто белковых образований такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Субъединичная структура белков часто фигурирует в научной литературе как четвертичная структура, т.е. как уровень организации, следующий за третичной структурой. Нуклеиновые кислоты с комплементарными последовательностями нуклеотидов образуют двуспиральные структуры. При определенных структурных особенностях могут образовываться и структуры, содержащие три цепи,— тре.хспиральные структуры. Наконец, многие функционально значимые образования содержат как белки, так и нуклеиновые кислоты такие образования называют нуклеопротеидами. В основе образования нуклеопротеидов лежат высокоспецифичные взаимодействия между соответствующими полипептидными и полинуклеотидными цепями, т.е. способность молекул биополимеров к взаимному узнаванию. [c.102]

    Однако для большого числа, а возможно, и для большинства функционально активных белков и нуклеиновых кислот могут проис.чодить и глубокие изменения конформации, приводящие к новой структуре с резко отличающимися от ис.чод-ной свойствами, в том числе способностью выполнять определенные биологические функции. Такие изменения могут существенно повлиять на взаимное расположение групп, участвующих в узнавании специфического лиганда, либо усиливая, либо ослабляя взаимодействие с этим лигандом. Одним из таких изменений является денатурация биополимера, что, как правило, приводит к полностью неактивным молекулам, причем нередко это Изменение оказывается необратимым. Однако это может быть и пере.чод в новую определенную структуру, достаточно резко отличающуюся от исходной, но имеющую свой структурный облик, подвер- [c.114]


    При изучении субъединичных белков и нуклеопротеидов аффинная модификация дает возможность понять, какие субъединицы участвуют в узнавании специфических лигандов. Эта проблема существенно проще, чем точная локализация точек модификации. Субъединицы как белков, так и нуклеиновых кислот обычно идентифицируются в соответствии с их положе1шем на хроматограмме, электрофореграмме, при изоэлектрическом фокусировании в зависимости от выбранной системы деления. Присоединение метки обычно не изменяет существ венно положение макромолекулы в таких системах. Следовательно, проблема заключается в том, чтобы обнаружить среди разделенных субъединиц ту, которая содержит введенную метку. Трудности возникают в тех случаях, когда в качестве лиганда, несущего реакционноспособную группу, берется полимер. Например, при изучении локализации транспортных РНК на рибосомах или на субъединицах аминоацил-тРНК-синтетаз возможно использование реакционноспособных производных тРНК. Присоединение молекул, несущих большой отрицательный заряд, может привести к сильному изменению положения модифицированного белка в используемой системе разделения. Следовательно, прежде чем проводить разделение, необходимо удалить специфическую макромолекулярную часть из модифицированного материала без разрушения связи метки с соответствующей субъединицей. [c.333]

    Все компоненты нуклеопротеидных комплексов синтезируются отдельно и затем собираются в функционирующею структуру. Для того чтобы сборка произошла и прошла прааильно. они должны узнать друг друга и получить программу сборки. Узнавание нуклеиновой кислоты белком представляет собой процесс, каждая стадия которого осуществляется за счет нуклеиново-белковых взаимодействий. [c.405]

    В1аимодействия в процессе узнавания могут быть специфическими и неспецифическими. Под специфическим нуклеиноао-бел-ковым взаимодействием подразумевается кооперативное взаимодействие определенных групп белка и нуклеиновой кислоты, возникающее за счет характерного для данного белка и данной нуклеиновой кислоты пространственного расположения этих групп. Примеры специфических взаимодействий репрессоры и операторы, РНК-полимераза и промоторы. [c.405]

    В готовой цепи нуклеиновой кислоты нуклеотиды (подобно аминокислотам в белках) могут претерпевать ковалентную модификацию, приводящую к изменению активности данной нуклеиновой кислоты. Такие посттранскрипционные модификации особенно свойственны молекулам тРНК, в которых обнаруживается много модифицированных нуклеотидов (рис. 5-9). Некоторые из них оказывают влияние на конформацию и на спаривание оснований антикодона, что облегчает узнавание соответствующего кодона мРНК молекулой тРНК. [c.259]

    Как ясно из сказанного, об узнавании белком определенной последовательности нуклеотидов и из исследований Н. Г. Есиповой и В. Г. Туманяна, а также Томас [466], физико-химическое соответствие полинуклеотидных и полиаминокислотных последовательностей вполне реально. Очевидно, однако, что глобулярные белки уступают по своим матричным свойствам нуклеиновым кислотам вследствие своей упаковки (в общем случае вследствие своей сложной третичной структуры). Естественна мысль, что фибриллярные белки, не свернутые в глобулу полипептидные цепи, могут в принципе служить вполне хорошими матрицами (так думал Н. К. Кольцов ) как для саморепликации, так и для снятия с них полинуклеотидных комплементарных копий. Эта мысль развита в очень интересной статье Картера и Краута [371] (о возможности матричного воспроизведения на белках см. также [306]). [c.59]

    Краткая характеристика проблемы. Вопрос о причинах хиральности биомолекул, то есть существования в надмолекулярных структурах лишь одной из двух возможных стереоконфигураций элементов, например Ь-аминокислот в белках или Ь-са-харов в полисахаридах и нуклеиновых кислотах, относится к числу нерешенных современной наукой [13, 26, 124]. Значение хиральности молекул для биоструктур сводят к таким факторам как упрощение процессов молекулярного узнавания, инструктирования информационных молекул, обеспечения однозначности протекания химических реакций [13]. Благодаря хиральности создается большая прочность конструкции полимеров, например, образование а-спиралей и р-структур из полипептидов, а также возможность возникновения кооперативных эффектов. Проблема происхождения хиральности имеет два аспекта установления казуального, причинного фактора, приведшего к хиральности элементов структур, и выяснение причины предпочтения того или иного знака хиральности. Что касается первого аспекта, то большая часть существующих подходов, обобщенных в работах [13, 26, 124], сводится к следующим типам объяснений гипотезы о космическом происхождении хиральности воздействие гиротропических минералов одного знака циркулярная поляризация солнечного света, нарушение чет-10СТИ в слабых взаимодействиях и ряд других. На второй вопрос обычно отвечают, что это связано со случайной флуктуа- [c.116]

    Функция есть феномен, проявляющийся в результате активности какого-либо органа (S hoffeniels, 1976). Это определение правильно на физиологическом уровне. Однако на молекулярном уровне, например для случая репликации ДНК и транскрипции, функция становится результатом координированной активности ряда макромолекул. Важно помнить, что сама по себе ДНК не может реплицироваться или транскрибироваться. Эти функции могут ею выполняться только во взаимодействии с несколькими ферментами, такими как ДНК-и РНК-полимеразы. Функция осуществляется в результате специфичного и согласованного взаимодействия между макромолекулами, в данном случае — между белками и нуклеиновыми кислотами. Конкретнее, функция есть результат взаимного узнавания специфичных групп аминокислот и оснований— компонентов макромолекул обоих типов. Таким образом, подобно тому как для функционирования органа требуется сотрудничество различных клеток, так для функционирования макромолекул необходима совместная активность различных видов молекул. На более низких уровнях организации частиц, включая простые молекулы, также необходимо сотрудничество — координация действия различных атомов и [c.178]


Смотреть страницы где упоминается термин Узнавание белками нуклеиновых кислот: [c.518]    [c.288]    [c.116]    [c.96]    [c.153]    [c.52]    [c.173]    [c.96]    [c.120]    [c.235]    [c.85]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте