Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

обмен раскрытие цикла

    В щелочном растворе происходит лишь раскрытие цикла, а кислотный гидролиз сопровождается значительным 0-обменом [c.310]

    Согласно современным представлениям, обмен протонов между первой сферой аминных комплексов и протонами массы раствора протекает по механизму лигандного обмена. Это однозначно следует из экспериментов Пирсона и др., показавших методом ЯМР высокого разрешения, что скорости обмена аминов, рассчитанные из уширения СНг- и ОН-пиков поглощения, практически совпадают [86]. Известно также, что скорость раскрытия хелатного цикла по концевым связям металл — лиганд примерно в 20—30 раз выше, чем отщепление всей молекулы лиганда [280]. Казалось бы, эти более быстрые периодические раскрытия циклов (в случае комплексов с этилендиамином по любой связи металл — азот) должны существенно ускорять обмен протонов между внутренней сферой и массой раствора (концевые аминные протоны лиганда как бы выносят- [c.197]


    В случае хелатных циклов с металлами с различающимися типами связей, например хелатов меди (II) с кислород- и азотсодержащими соединениями, эффективность рассматриваемого процесса будет зависеть от подвижностей координирующих групп лиганда, в состав которых входят протоны. Расчеты показали [282], что скорость разрыва связи медь — кислород в тысячу раз выше, чем скорость разрыва связи медь — азот. Отсюда следует, что быстрое раскрытие циклов по связям медь—кислород не должно ускорять реакцию протонного обмена [комплексы ионов меди (II) с моноэтаноламином и серином], в то время как любые раскрытия хелатных циклов с металлом в комплексах с этилендиамином оказываются эффективными в обмене протонами. В пользу этого механизма говорит также наблюдаемое небольшое ускорение протонного обмена в комплексах ионов меди (II) с аспарагином (см. табл. 5.19), где имеется тот же фрагмент двух связей медь — азот, что и в комплексах с этилендиамином. Однако в комплексе с аспарагином большая жесткость всего хелатного цикла с металлом должна затруднять обмен за счет раскрытия цикла, и катализ следует ожидать в более щелочных областях, что и наблюдается в эксперименте. [c.198]

    Направлением раскрытия оксиранового цикла можно управлять за счет вариаций условий реакции и природы нуклеофила, что позволяет в необходимых случаях осуществлять обмен местами соседних функциональных [c.140]

    В условиях основного катализа обмен протона происходит легко, но зачастую он конкурирует [81] с процессом разложения в результате циклореверсии или р-элиминирования в анионе. Прямое литиирование по атому углерода идет легко [82], однако образующиеся литиевые производные различаются по своей устойчивости, поэтому некоторые из них не находят препаративного применения [83]. Атомы водорода боковых алкильных групп обладают СН-кислотно-стью за счет того, что в депротонированных частицах происходит делокализация заряда с участием кольцевых атомов азота. В связи с этим существует интересное различие между 1,2,5-окса- и 1,2,5-тиадиазолами в первом случае металлирование идет при взаимодействии с н-бутиллитием, а во втором — необходимо использовать диизопропиламид лития для предотвращения конкурентного нуклеофильного присоединения по атому серы, приводящего к раскрытию цикла [84]. [c.635]

    Метилциклопро-пан, Оа Дейтерометилцик-лопропаны di—d [метилдейтеропро-пан, продукты разложения] Катализатор и условия те же 40° С, обмен достигает равновесия за 100 мин. Доля реакций раскрытия цикла и крекинга, равная в начальный момент 0,24, увеличивается со временем [811] [c.535]


    На Ш-пленке обмен протекает при низких температурах, катализатор не отравляется в процессе реакции, основные начальные продукты содержат один атом дейтерия. Авторы предполагают, что на поверхности Ш могут образовываться алкильные радикалы (моноадсорбированные углеводороды), достаточно устойчивые при низких температурах. Алкильные радикалы обнаруживают слабо выраженную тенденцию подвергаться обратной диссоциации с образованием а,а-, а,р- и сс, у-ди-адсорбированных форм. В области температур ниже —20° С изотопный обмен н-бутана протекает без осложнений его другими реакциями. При температурах О— 100° С образуются прочно адсорбированные формы и последующий обмен происходит значительно медленнее, чем на чистой поверхности. При температуре 130° С происходит гидрогенолиз [78] с образованием метана, этана, пропана. Молибден и титан при обмене на них этана с дейтерием [74] ведут себя аналогично. Способность вольфрама вызывать обратимое образование алкильных радикалов относится даже к таким сравнительно неустойчивым соединениям, как циклопропан и метил-циклопропан. В присутствии других металлов происходит раскрытие цикла, но не реакция обмена [79]. Следовательно, обратимое образование циклопропиленовых радикалов возможно только на Ш. [c.58]

    Уже отмечалось, что к числу самых важных фотохимических реакций азолов относится превращение пиразолов в имидазолы [18], Реакция носит общий характер, но ее ингибируют электроноакцепторные заместители (например 4-С1, 1- OPh, 4-NO2), в этих случаях образуются смолообразные продукты. По большей части эти превращения можно представить как раскрытие цикла с образованием азирина (85) с последующим замыканием нового кольца схема (56) . Если допустить существование таутомерии в Л -незамещенных пиразолах, то такая последовательность выглядит как простой обмен положений N-2 и С-3. Похожие перегруппировки происходят в антипирине (86), из которого образуются [c.465]

    Длй амино-К-сульфенилгалогенидов характерны типичные реакции сульфенилгалогенидов (см. разд. 11.16.2.3). При действии нуклеофилов — алкоксид-ионов [6], аминов [6], 0-алкилкарбама-тов [7], цианид-иона [1], тиоцианат-иона [1]—происходит замещение у атома серы с отщеплением галогенид-иона. При взаимодействии с алкенами и алкинами протекают реакции электрофиль-ного присоединения [8], а с 1,2-эпоксидами происходит раскрытие цикла. Обмен галогена между диэтиламино-М-сульфенилхлоридом и -бромидом в толуоле при 50 °С происходит очень быстро относи- тельно шкалы времени спектров ЯМР, в дихлорметане он идет при [c.487]

    Чтобы принять эту теорию, необходимо предположить, что циклический диэфир гидролизуется гораздо быстрее, чем обычные ациклические эфиры. Тодд и сотр. [112] смогли осуществить синтез таких циклических эфиров и показали, что эти эфиры на самом деле способны быстро гидролизоваться. Уэстхеймер и сотр. [109, ИЗ] затратили много усилий, чтобы определить особенности структур, в которых проявляются эти кинетические эффекты. Они изучили ряд простых модельных соединений, таких, как этиленфосфат, и установили, что циклические фосфаты и фосфонаты, содержащие диэфир-ную группировку — О — РО — О — в качестве части пятичленного цикла, как в кислой, так и в щелочной среде гидролизуются в 10 ...10 раз быстрее, чем аналогичные соединения с открытой цепью. Высокая реакционная способность, обусловленная циклическим строением эфиров, не ограничивается лишь гидролитическим раскрытием цикла. В циклическом диэфире типа этиленфосфата как раскрытие цикла, так и конкурирующий обмен кислорода между неэтерифицированной гидроксильной группой и растворителем, при котором, естественно, не происходит раскрытия цикла, идут с высокими скоростями. Такое совпадение кинетических эффектов кольца в двух конкурирующих реакциях, одна из которых происходит с раскрытием этого кольца, а другая — с его сохранением, проявляется как при щелочном, так и при кислотном гидролизе циклических диэфиров, т. е. в реакции второго порядка аниона диэфира с гидроксильным ионом и в реакции гидролиза сопряженной [c.980]

    Направлением нуклеофильного раскрытия оксирано-вого цикла можно управлять за счет вариаций условий реакции и природы нуклеофила, что позволяет в ряде случаев осуществлять обмен местами соседних функциональных групп (через замыкание и раскрытие оксиранов), а также обеспечивать нужную стереохимию включенных в такие системы асимметрических центров. [c.111]

    Многие комплексы u(II), Со(П) и Ni(II) с би- и тетрадентатными лигандами — производными салицилового альдегида — обмениваются со свободными ионами металлов с измеримыми скоростями. Скорость обмена бис-(салицилальдегидэтилендиимина) меди подчиняется уравнению первого порядка относительно обоих реагентов с энергией активации 23 ккал [75]. Аналогично обмен бис-(салицила.пьдегид-о-фениленди-имина) кобальта (II) с ацетатом Со(П) в пиридине подчиняется уравнению второго порядка с энергией активации 17 ккал. Однако маловероятно, чтобы обмен происходил через одно бимолекулярное столкновение. По-видимому, он идет в несколько стадий с частичным раскрытием хелатного цикла и образованием новых связей металл — лиганд. Далее, эти комплексы почти наверно изменены вследствие координации с растворителем пиридином, как это имеет место в случае комплексов Ni(II). Так, превращение ис-(К-метилсалицилальдимина) никеля в пиридине в парамагнитную форму приводит к быстрому обмену с хлористым никелем, тогда как бмс-(салицилальдегид)-этилендииминникель не изменяется и инертен в отношении обмена [114]. [c.139]


    Для раскрытия механизма сорбции представляет интерес применение метода блокирования ионогенных групп катионита. Поставленный с этой целью эксперимент заключался в получении выходных кривых по азоту и цветности при адсорбции сиропа с pH 6,5 морфинной формой КУ-1. Аналогичные кривые были получены для Н-формы катионита (рис. 3). Почти полная индеферентность катионита в морфинном цикле свидетельствует о преобладании обменного характера сорбции органических соединений. [c.232]

    Хааке и Уэстхеймер предложили следующее объяснение наблюдаемых явлений. Угол связи у атома фосфора в сложноэфирной группе пятичленного цикла приближается к 90° (1,571 рад) [другие углы в цикле в среднел равны по 112,5° (1,963 рад)]. В такой структуре в начальном состоянии фосфата с тетраэдрически гибридизованным атомом фосфора напряжение составляет лишь несколько килокалорий на моль. С другой стороны, в тригонально-бипирамидальной конфигурации, предполагаемой для переходного состояния 8 2-типа с нятилигандным фосфором, угол связи у атома фосфора, включающий вновь образующуюся связь, при отсутствии напряжения должен быть смежным с прямым углом описанной выше модели и, конечно, не с углами, равными 120° (2,094 рад). Возможность ненапряженной структуры переходного состояния приводит к существенному уменьшению энергии активации нуклеофильного замещения. Именно вследствие такого строения переходного состояния угол между линиями подхода и ухода обменивающихся групп, обычно равный 180° (3,141 рад), уменьшается приблизительно до 120° (2,094 рад), и именно поэтому линия приближения входящего лиганда образует примерно равные углы с линиями удаления двух альтернативно отщепляющихся лигандов. Отщепление одного из них соответствует раскрытию фосфат-эфирного цикла, а отщепление другого, т. е. неэтерифицированной гидроксильной группы, соответствует обмену кислорода. Поэтому в обоих случаях наблюдается один и тот же кинетический эффект, обусловленный отсутствием напряжения активации. Для кислотного гидролиза эта модель приведена пиже  [c.981]


Смотреть страницы где упоминается термин обмен раскрытие цикла: [c.526]    [c.22]    [c.547]    [c.278]    [c.278]    [c.155]    [c.465]    [c.256]    [c.455]    [c.161]    [c.354]    [c.316]    [c.194]    [c.886]   
Химия гетероциклических соединений (2004) -- [ c.520 , c.521 ]




ПОИСК





Смотрите так же термины и статьи:

Цикл обменный



© 2025 chem21.info Реклама на сайте