Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы отделения кальция анионов

    Растворимость важнейших солей (а также гидроокисей) Са, 5г и Ва при обычных условиях сопоставлена на рис. ХП-57, из которого видно, что для отдельных анионов по ряду Са—8г—Ва она изменяется различно. Это обстоятельство важно для аналитической химии, так как на нем основаны некоторые методы отделения рассматриваемых катионов друг от друга. В частности, резкое различие растворимости хромовокислых солей дает возможность отделять Ва от 5г и Са. Крайне малой растворимостью щавелевокислого кальция пользуются для открытия следов этого элемента (например, в обычной питьевой воде). [c.172]


    Ю. М. Морачевский и М. Н. Гордеева предложили метод отделения молибдена от железа, алюминия и кальция из азотнокислых растворов и солянокислых растворов на анионите ПЭ-9. [c.207]

    Отделение от некоторых анионов. Для разделения кальция и фосфат-иона Существует несколько методов. К ним относятся мо- [c.165]

    В литературе также описан метод определения калия с предварительным отделением его от кальция, магния, анионов РО4 и SO4 ионитами 229. [c.216]

    Фосфорная кислота образует довольно прочные комплексы с железом и алюминием и, следовательно, может применяться в качестве комплексообразующего элюента при отделении этих металлов от двузарядных ионов, в частности, от марганца и меди [29]. Высокой устойчивостью отличаются анионные комплексы с пирофосфатом и полиметафосфатом (ср. рис. 5,4) с их помощью некоторые элементы, например, медь, цинк и марганец, могут быть отделены от железа методом селективного поглощения. Железо, образующее прочные анионные комплексы, не поглощается катионитом, который лучше всего использовать в КН4-форме [34 80, 108, 109 ]. В качестве комплексообразователя для меди иногда используется несколько необычный элюент — раствор тиосульфата. А. М. Васильев, В. Ф. Торо-пова и А, А. Бусыгина [134 ] применяли раствор тиосульфата для отделения меди от цинка или кадмия, а Д. И. Рябчиков и В. П. Осипова [109 ] — для отделения меди от алюминия и магния. Коэффициенты распределения [59 ] определяют следующий порядок элюирования медь, кадмий, свинец, цинк. Такие элементы, как никель, кобальт, марганец, алюминий, железо, кальций и барий, весьма прочно удерживаются катионитом. [c.364]

    Ю. В. Морачевский, М. Н. Зверева и А. А. Кузнецова показали возможность отделения аниона POj от кальция, железа и алюминия на анионите ПЭ-9 и ЭДЭ-10 в l-форме. При пропускании раствора, 0,1-н. по соляной кислоте, через колонку с анионитом катионы проходят в фильтрат. Затем анионы POf вымывают 100 мл 2-н раствора соляной кислоты и определяют обычными методами. [c.212]

    Метод отделения, приводимый ниже, основан на удалении железа и других мешающих элементов при помощи анионного обмена. Хлоридные комплексы железа, меди, кобальта, кадмия и цинка могут задерживаться на колонке с сильноосновной анионообменной смолой, что позволяет отделить их от никеля, алюминия, титана, кальция, магния и щелочных металлов, которые на смоле не задерживаются. Описываемый метод аналогичен предложенным Либерманом [14] для никеля в медных рудах и Эстоном и Лаверингом [15] для никеля в хондритовых метеоритах. [c.324]

    Вместо комплексоната серебра используются также комплексонаты цинка, кадмия или свинца в соответствующих средах [86]. Этот лгетод позволяет определять барий в присутствии больших количеств стронция и кальция после выделения BaS04 из охлажденного комплексо-натного раствора добавлением избытка Go(NOg)2 ]87]. Описано прямое полярографическое определение стронция и бария в присутствии кальция при соотношении Ва Са = 1 30000 и Sr Са = 1 455. Метод основан на предварительном отделении кальция на сильноосновном анионите в ОН-форме, элюировании стронция и бария и полярографировании. Определению мешают калий и натрий [88]. [c.15]


    Оксалат аммония (НН4)2С.з04 применяется чаще всего для осаждения Са" и отделения его от Mg". Полученный осадок имеет состав a jO HgO и может быть в таком виде после высушивания (на стеклянном фильтре) взвешен. Чаще осадок прокаливают при этом он переходит сперва в СаСОд, а затем в СаО. Прокаленную окись кальция взвешивают (следует иметь в виду, что СаО очень гигроскопична и это затрудняет взвешивание). Кальций может быть этим методом отделен даже от Fe" , АГ" и РОГ в этом случае осаждение ведут из слабокислого раствора Fe" и АГ" дают при этом с С0О4 растворимые комплексные анионы. [c.133]

    Р. Н. Головатый применил метод отделения железа от ряда металлов, основанный на образовании устойчивого анионного комплекса Fe -f, не сорбируемого катионитом в Н-форме. Тем же автором применен тайрон для хроматографического отделения железа, алюминия, титана от кальция, магния, марганца и меди. Метод основан на образовании комплексов Ре +, А1 +, Т1 + с динатриевой солью пирокатехина 3—5-дисульфокислоты. [c.190]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Важным примером использования в количественном анализе катионного обмена является отделение анионов 501 от различных катионов. Так хроматографический метод определения серы в пиритах основан на поглощении трехвалентного железа катионитом. Выходящую из колонки серную кислоту можно легко определить обычным весовым способом в виде сульфата бария. Аналогично можно определить фосфаты в ( юсфоритах, поглощая кальций, магний, железо и алюминий катиони- [c.145]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Отделение металлов, образующих кислородные анионы, от других металлов выполняется весьма просто. Для этой цели могут применяться как катиониты, так и аниониты — например в С1-форме. Здесь используется тот же принцип, что и при отделении мешающих ионов противоположного знака. Примером применения анионообменных методов может служить отделение хромат-ионов от алюминия [30], железа [ИЗ], кобальта [39] и титана [98]. Аналогичные методы применяли Т. А. Белявская и Е. П. Шкробот [14] для отделения хрома (VI) от хрома (III) (см. также [119]), а Ю. В. Морачевский и М. Н. Гордеева [78] — для отделения молибдена от кальция, алюминия и железа. Известен метод определения ванадия, хрома и молибдена в сталях [36], основанный на том, что железо не поглощается анионитами из ацетатного буферного раствора (pH 2,5—3,0), к которому, во избежание осаждения железа, добавлен маннитол. Ванадий элюируют 0,6М NaOH, хром — ЪМ НС1 и, наконец, молибден — iM H l. [c.353]

    Все двухзарядные катионы этого ряда имеют электронные конфигурации инертных газов. Их химические и физические свойства последовательно изменяются по мере увеличения размера, что определяет, например, различия в растворимости их солей, обсуждавшиеся в гл. 9. Эти катионы неспособны к заметной поляризации и не имеют полос поглощения в ультрафиолетовой и видимой областях. Тем не менее легкая растворимость безводных хлорида и нитрата кальция в спиртах, эфире, ацетоне и безводных карбоновых кислотах позволяет предположить, что связи кальция в его солях могут иметь до некоторой степени ковалентный характер. Это позволяет объяснить следующий факт. Несмотря на то что катионы этой группы дают комплексы преимущественно с анионными лигандами, содержащими кислород (например, с родизоновой кислотой, мурексидом и о-крезол-фталеинкомплексоном), кальций (и магний) можно также определять спектрофотометрически с реагентами, в которые входят ненасыщенные содержащие азот группы и фенольные кислороды. К таким реагентам относятся эриохром черный Т и 8-оксихинолин. Во всех случаях независимо от типа лиганда методы основаны на сдвиге полос поглощения лиганда под влиянием катиона. За исключением реакции кальция с кальцихромом (гл. 6), больщинство этих реагентов неспецифично и оказывается необходимым предварительное отделение элементов. [c.326]


    Плутоний из водного раствора можно легко экстрагировать многими органическими растворителями, не смешивающимися с водой. Экстракция растворителями используется большей частью в нитратных системах, поскольку сильные комплексообразуюпще анионы, например сульфат-, фосфат-, фторид- или оксалат-ионы, способствуют удержанию плутония и других актинидных элементов в водной фазе, препятствуя, таким образом, экстракции. Для экстракции плутония могут быть использованы различные органические растворители. Наиболее эффективными экстрагентами являются растворители, применяемые при экстракции урана (см. гл. V, табл. 5.32). Наиболее важными из них являются метилизобутилкетон (гексон) и ТБФ . Весьма эффективным экстраген-том, в особенности для лабораторных исследований, является также дибутиловый эфир. Для извлечения актинидных элементов в органическую фазу при экстракции дибутиловым эфиром и метилизобутилкетоном необходимо, чтобы водная фаза имела высокую концентрацию нитрат-ионов. Необходимая концентрация нитрат-ионов достигается добавлением растворимых солей, например нитратов аммония, магния, кальция или алюминия. Более высоко-заряженные катионы оказывают более сильное высаливающее действие, поэтому в качестве второго нитрата часто используют нитрат алюминия. Поскольку азотная кислота в гексоне заметно растворяется, желательно, чтобы кислотность водной фазы была уменьшена до такой степени, насколько это возможно сделать, чтобы не вызвать явлений гидролиза. При экстракции ТБФ азотная кислота может служить одновременно высаливателем, что является большим преимуществом. Это возможно потому, что ТБФ вполне устойчив по отношению к окислению азотной кислотой. Отделение плутония от урана и продуктов деления экстракционными методами зависит от экстракции различных валентных состояний плутония, а также от возможности получения водных растворов, [c.281]

    В нейтральных и близких к ним растворах с арсеназо I реагируют многие элементы [в том числе Fe(III), Al, Ti, U, u, Zr, Th, Mo, Sn, Bi], Для их отделения можно использовать различные методы, например электролиз на ртутнОлМ катоде, экстракцию и др. Однако наиболее надежно выделение онределяели.1х РЗЭ осаждением в виде оксалатов или фторидов. Метающее влияние кальция и магния устраняют проведением цветной реакции при pH 5. При этом значении pH чувствительность цветной реакции арсеназо I с РЗЭ снижается примерно в 2 раза [6, 41, 43]. Из анионов мешают фториды, фосфаты и оксалаты. [c.314]


Смотреть страницы где упоминается термин Методы отделения кальция анионов: [c.325]    [c.177]    [c.79]   
Аналитическая химия кальция (1974) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций отделение

Методы отделения

Методы отделения кальция

Методы отделения на анионитах



© 2025 chem21.info Реклама на сайте