Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа комплексы хлоридные

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]


    Для подкисления лучше всего брать разбавленную азотную кислоту. Серную и, особенно, соляную кислоты применять не следует, так как они ослабляют окраску. Это объясняется образованием хлоридных (или сульфатных) комплексов железа, например  [c.256]

    Некоторые ионы, имеющие собственную окраску, также мешают определению титана. Из них чаще всего приходится иметь в виду присутствие трехвалентного железа, особенно в солянокислых растворах. В этом случае образуется окрашенный в желтый цвет хлоридный комплекс железа. При умеренных количествах железа желтую окраску хлоридного комплекса можно устранить прибавлением фосфорной кислоты, которая связывает железо в бесцветное комплексное соединение  [c.258]

    В и 0,68 В. Здесь кроме изменения ионной силы раствора имеет значение также образование хлоридных или сульфатных комплексов железа ионы Fe + образуют более прочные комплексы, чем ионы Fe +, поэтому концентрация первых уменьшается в значительно большей степени, чем вторых, что приводит к уменьшению потенциала системы. [c.386]

    Однако ряд соединений, как, например, хлоридные комплексы трехвалентного железа, роданидные комплексы железа или кобальта и т. п., не растворяются в тяжелых растворителях. В этих случаях применяют легкие растворители — диэтиловый эфир и др. [c.114]

    Кроме экстрагирования железа в виде хлоридного комплекса, применяется также экстрагирование хлоридных комплексов таллия, мышьяка, галлия и золота, йодидных комплексов сурьмы, висмута и [c.115]

    Серная кислота для подкисления нежелательна из-за образования сульфатных комплексов железа, препятствующих реакции (13.17). Наличие в растворе фосфат-, пирофосфат- и фторид-ионов вообще недопустимо, так как железо с этими анионами образует комплексные соединения, которые иодид уже не окисляют. Большого избытка НС также следует избегать, так как хлоридные комплексы железа затрудняют протекание реакции (13.17). [c.284]

    Хлоридные комплексы железа менее прочны, чем роданидные. Тем не менее с увеличением концентрации хлоридов, все большее количество железа связывается с хлорид-ионами и чувствительность роданидной реакции уменьшается. [c.256]

    Для того чтобы легко было установить тот момент, когда прибавлено достаточное количество двухлористого олова, раствор хлорного железа перед восстановлением нагревают почти до кипения. Это приводит к значительному усилению интенсивности желтой окраски вследствие уменьшения диссоциации хлоридного комплекса железа. Признаком полноты восстановления железа является исчезновение желтой окраски раствора обесцвечивание горячего раствора от прибавления избытка 1—2 капель раствора двухлористого олова хорошо заметно. [c.381]


    Приготовление особо чистых реактивов для выполнения аналитических работ. На ионитовых колонках можно успешно очищать, например, соляную кислоту и ее соли от примесей железа. Для этого концентрированные растворы хлоридов пропускают через колонку с сильноосновным анионитом в С1-форме. Сорбция Ре " в виде его хлоридных комплексов чрезвычайно велика, и железо полностью задерживается на колонке. Аналогично можно очищать растворы щелочи от СОз, пропуская их через колонку с сильноосновным анионитом в ОН-форме. [c.143]

    Экстракция прочими растворителями. Эллиот и Робинзон [700] для экстрагирования хлоридных комплексов применили дихлордиэтиловый эфир. Оптимальная концентрация НС1 при этом 9 N. Экстракция железа этим растворителем несколько хуже, чем другими описанными выше. Некоторое преимущество дихлордиэтилового эфира в том, что растворитель несколько тяжелее воды, что удобно при повторных экстракциях. В качестве растворителей используют также изоамиловый спирт, метиламилкетон [213], бутилацетат [1216] и смесь диэтилового эфира с тетрагидрофураном [1186]. [c.173]

    Для определения натрия (и других элементов) в ферритах железо—марганец—цинк или железо—марганец—магний использовали пламенный фотометр ФПЛ-1. Изучено влияние железа, марганца, цинка и магния на эмиссию натрия. Железо отделяли экстракцией хлоридного комплекса 30%-ныМ раствором трибутилфосфата в диэтиловом эфире. Цинк и магний не влияют на определение натрия, марганец вводят в эталонные растворы [438]. [c.168]

    Хлоридные комплексы металлов. Один из наиболее точных методов определения ряда примесей в сталях основан на экстрагировании. Из 6 н. раствора соляной кислоты трехвалентное железо экстрагируется диэтиловым зфирсм в виде комплексного соединения HlFe lJ. Большая часть хлоридов других металлов (Ni, Со, А1, Сг, Ti и т. д.) остается в водной фазе. Главные трудности при этом связаны со значительной диссоциацией комплексов в водной фазе, а также со ступенчатым характером их образования. Ион трехвалентного железа образует с ионами хлора ряд групп комплексного характера, в зависимости от концентрации свободных ионов хлора в растворе. [c.115]

    При определении натрия в чугунах используют практически одну и ту же методику перевода образца в раствор железо в виде хлоридного комплекса экстрагируют диэтиловым эфиром [26, 905]. Предложена следующая методика [905]. [c.168]

    Экстракция железа (III) из хлоридных растворов имеет большую историю [4, 5, 7, 8, 11, 12] и широко применяется. Кроме того, эта система служила своего рода моделью экстракционных систем, включающих извлечение металлгалогенидных комплексов, поэтому она детально изучалась и в теоретическом плане. В связи с тем, что экстракция железа из хлоридных растворов является типичной для извлечения металлов из галогенидных растворов вообще, во многих разделах этой книги мы рассматриваем то или иное явление на примере именно этой экстракции. Указанное обстоятельство позволяет опустить в настоящем параграфе часть материала, так или иначе изложенного в других разделах. [c.132]

    Спектры люминесценции хлоридных комплексов свинца при температуре жидкого азота лежат в синей области спектра с максимумом люминесценции при 385 нм (синее свечение), а при размораживании растворов спектр люминесценции сдвигается в длинноволновую область с максимумом люминесценции при 490 нм (зеленое свечение). Интенсивность всплеска зеленой люминесценции пропорциональна количеству свинца, присутствующего в растворе. Определению свинца не мешают ЮОО-кратные количества Na, К, Са, Ва, В, Mg, Sr, d, Sn, Ве, Со, Ni, r, In, Al, Sb, Bi, Se, Te, u, Fe, As, J", F , POf", SO4 и S N . Железо и медь несколько гасят интенсивность всплеска, но при применении метода добавок их действие нивелируется. [c.192]

    Определение рутения ( 1,3%) в искусственных сплавах плутония с кобальтом (или железом), содержащих стабильные изотопы элементов — продуктов деления, основано на измерении светопоглощения хлоридного комплекса Ru (IV) при 485 ммк (6485 5300) [718]. Подготовка пробы к анализу меняется в зависимости от состава растворенного образца. [c.408]

    Ионообменная хроматография. Для поглощения разделяемых катионов чаще всего применяются анионитные смолы дауэкс 1, амберлит и другие в хло-ридной, фосфатной или цитратной форме. Методы разделения основаны на способности катионов кобальта давать в сильно солянокислом растворе хлоридные анионные комплексы, поглощающиеся анионитом катионы никеля, марганца и некоторых других металлов в этих условиях не задерживаются анионитом и проходят в фильтрат. При промывании колонки более разбавленным раствором соляной кислоты, например 4 N раствором, происходит вымывание кобальта, в то время как медь, железо остаются адсорбированными смолой. Описаны и другие методы, когда разделяемые катионы поглощают катионитами, а затем вымывают кобальт растворами подходящих комплексообразующих веществ, например, раствором нитрозо-К-соли, комплексо-ном III и др., или смесью растворов соляной кислоты и органических растворителей. В табл. 18 дана сводка предложенных мето- [c.81]


    N раствором соляной кислоты. Таким путем отделяют кобальт от никеля, титана, ванадия, свинца, олова, меди, молибдена, хрома, марганца и селена. Поглощенный анионитом хлоридный комплекс кобальта извлекают далее из колонки 350 мл 4 N раствора соляной кислоты. Элюат выпаривают досуха, остаток растворяют в 5 мл концентрированной соляной кислоты и экстрагируют хлорид трехвалентного железа четыре-пять раз порциями по 5 мл амилацетата. Водный раствор выпаривают досуха и растворяют остаток в 5 мл 11 соляной кислоты. [c.188]

    Сказанное выше можно подтвердить сопоставлением результатов изучения новедения системы Ре /Ре в растворах с переменным содержанием соляной и хлорной кпслот и в растворах с меняющейся концентрацией соляной п щавелевой кислот. Сопоставление кривых зависимости потенциала системы РеШ/Ке11 от концентрации соляной и хлорной кислот наглядно показывает влияние хлорид-иона как адденда (рис. 1). Сопоставление кривых зависимости потенциала системы РеШ/Ре от концентрации соляной кислоты, от содержания соляной и щавелевой кислот наглядно показывает, что уменьшение влияния оксалата с увеличением содержания соляной кислоты вызвано возрастанием эффекта связывания попа трехвалентпого железа в хлоридный комплекс и уменьшением степени диссоциации щавелевой кислоты с увеличештем содержания сильной кислоты. [c.45]

    Зга реакция протекает быстрее в горячем растворе, ее проводят в присутствии концентрированной соляной кислоты, которая создает не только нужную срецу, но и является индикатором, так как хлоридные комплексы железа(III) окрашены в интенсив-но-желтый цвет. Избытка восстановителя нужно избегать, а небольшие его количес1 ва окисляют с помощью раствора Нд С1 2-  [c.152]

    Если в анализируемом растворе содержатся анионы СГ, S04 или РОГ, часто связывающие определяемый катион Ме в комплекс МеАн, то надо выбрать такой реактив R, который с определяемым катионом Ме дает болге устойчивый комплекс. Хлоридные и сульфатные комплексы, как правило, отличаются небольшой стойкостью, поэтому присутствующие в растворе анионы СГ и SO4 практически не влияют на окраску устойчивых комплексов, например салицилатного комплекса железа. При наличии в исследуемом растворе посторонних ионов, мешающих анализу, определяемый элемент Ме иногда осаждают и его концентрация при этом повышается. В колориметрическом анализе осаждение определяемого иона часто проводится с участием коллектора (стр. 372). [c.405]

    Кроме того, микрохимический анализ по спектрам поглощения соединений в ультрафиолетовой области имеет перед видимой микрокристаллоскохщей то преимущество, что можно подыскать специфические реакции, так как поглощение ультрафиолетовых лучей химическими соединениями различно. Например, реакция открытия иона железа (III) по образованию в растворе хлорида железа (III) хлоридного комплекса, является специфической, так как ни один другой хлорид не поглоЩает ультрафиолетовых лучей в длинноволновой (365 ммк) ультрафиолетовой области. [c.53]

    Подготовка пробы к анализу. Растворимые соединения железа, например квасцы, после взвешивания растворяют в воде, подкисленной а ютной кислотой. Нерастворимые в воде соединения железа часто можно перевести в раствор, обрабатывая их кислотами. Из обычно применяемых для этой цели кислот быстрее всего действует соляная кислота. Соляная ki слота, как всякая сильная кислота, растворяет окисел металла, но в данном случае быстрому растворению способствует связывание образующихся ионов железа в малодиссоциированный хлоридный комплекс. Если в исследуемом образце содержится закисиое железо, для растворения пользуются смесью соляной и азотной кислот. [c.155]

    Идеальным является случай, когда при определенной концентрации комплексообразователя L один из разделяемых ионов связан в анионные комплексы, а другой находится в виде катионов. Например, в аммиачной среде в присутствии салицилат-ионов SaZ железо (И1) образует анионный комплекс [FeSa/gf , в то время как медь связана в аммиачный комплекс [Си (NHa) из такого раствора медь поглощается катионитом, а железо проходит в фильтрат. В концентрированных растворах НС1 многие ионы металлов образуют анионные хлоридные комплексы и могут быть отделены на анионитной колонке от ионов никеля, не образующего таких комплексов и проходящего в фильтрат. [c.200]

    Для комплексов катионов металлов первой группы (во внешней электронной оболочке находится 2 или 8 электронов) и для некоторых переходных металлов (с недостроенным -подуровнем) основным фактором является размер лигандов. Фторидные комплексы прочнее, чем хлоридные, а хлоридные прочнее бро-мидных и иодидных. Так, бериллий, магний, алюминий, лантан, цирконий образуют прочные фторидные комплексы (IgPi равны соответственно 4,3 1,3 6,1 2,8 8.8) устойчивость же комплексов названных элементов с хлорид-, бромид- и иодид-ионами невелика или они вообще не образуются. Из пере.ходных металлов такая же закономерность наблюдается, например, для железа и марганца устойчивость фторидных, хлоридных и бромидных комплексов этих металлов характеризуется соответственно числами 5,3 1,5 и —0,3 (железо) а также 5,5 и 0,96 (марганец). [c.256]

    Для отделения мышьяка, сурьмы, меди, свинца, ртути, кадмия и других ионов от олова используют осаждение их в виде сульфидов в присутствии фто-рид-ионов, которые связывают олово. При фотометрическом определении кобальта в виде хлоридного или роданидного комплексов вредное влияние железа (П1) устраняют, связывая его в прючный фторидный комплекс. [c.267]

    Железо от алюминия отделяют на анионите в виде хлоридного комплекса из 97V H I. К элюату добавляют мл 3%-ной HjOj, аммиак для нейтрализации кислоты иэкстрагируютоксихинолинаталюыиния. Экстракт фотометрируют при 420 нм. [c.196]

    В процессе изучения механизма экстракции железа(III) из солянокислых растворов было обнаружено, что формы существования железа в экстракте и в водной фазе раз личны [284]. В связи с этим было выполнено более обсто ятельное спектрофотометрическое изучение комплексооб разования железа в водных хлоридных растворах [285] Работа позволила заключить, что в водной фазе при экст ракции железа из растворов соляной кислоты присутству ет преимущественно комплекс РеС1з(Н20), а в экстрак те — только анион Fe U . [c.113]

    Ион сульфата при содержании до 2 мг1жл не оказывает заметного влияния на полноту извлечения урана. В случае больших количеств его мешающее влияние может быть устранено предварительным осаждением урана (VI) аммиаком или применением в качестве высаливателя нитрата кальция. Органические комплексообразующне вещества мешают только при экстрагировании из растворов с очень малым содержанием свободной кислоты. Повышением кислотности их влияние может быть устранено полностью. При одновременном присутствии фторидов, фосфатов и сульфатов целесообразно применять высаливатель, состоящий из смеси нитратов алюминия и кальция или железа и кальция. Хлориды уменьшают специфичность экстракционного отделения урана вследствие того, что в их присутствии некоторые элементы, как например железо (III), также экстрагируются диэтиловым эфиром в виде хлоридных комплексов. [c.292]

    Индий в форме хлоридных анионных комплексов адсорбируется на сильноосиовном анионите вофатит Ь150 из раствора в 5МНС1 алюминий, мышьяк и железо остаются в растворе [278]. Это позволяет значительно упростить определение небольших количеств индия в некоторых природных и техниче-ческих материалах. При хроматографировании 0,1 М растворов солей тяжелых металлов на различных препаратах -у-АЬОз получен следующий сорбционный ряд катионов, в котором каждый предыдущий член сорбируется сильнее последующего [361]  [c.19]

    Х8 (высота слоя 12 см, диаметр колонки 6 мм). На анионите поглощаются при этом хлоридные комплексы кобальта совместно с соответствующими соединениями железа, меди и цинка. Кобальт извлекают из колонки 25 мл 4 N раствора соляной кислоты. Для очистки элюата от следов смолы прибавляют к нему 2,5 г. цитрата натрия, нейтрализуют раствором едкого натра до pH 8,2 и извлекают кобальт эфирным раствором дитизона. Экстракты выпаривают с азотной кислотой и разлагают органическое вещество, нагревая остаток с концентрированной хлорной кислотой до полного обесцвечивания. Затем раствор трижды выпаривают досуха с раствором хлорида натрия, концентрированной соляной кислоты и, наконец, воды. Остаток чисто-белого цвета растворяют в воде и определяют кобальт спектрофотометрически нитрозо-К-солью. Этим методом 0,0003% кобальта можно определить с ошибкой 4%. Продолжительность определения сокращается, если вести определение с радиоактивным контролем Со в этом случае экстракция дитизоном не нужна. При обработке колонки 4 N раствором соляной кислоты элюат собирают последовательно фракциями по 2 мл, измеряя активность каждой фракции. Для определения кобальта отбирают фракцию, содержащую ббльшую часть кобальта. После выпаривания с соляной кислотой остаток растворяют в 2 мл воды и определяют кобальт спектрофотометрически. [c.205]

    Часто применяются методы адсорбционной, осадочной, ионообменной и бумажной хроматографии. Описан ряд методов отделения кобальта, главным образом от никеля, меди, железа и некоторых других элементов, с использованием в качестве адсорбентов окиси алю.миния, целлюлозы, пермугитов. Большее распространение имеют ионообменные методы разделения на колонках с анионитами. В 9jV растворе соляной кислоты образуются хлоридные анионные комплексы кобальта, меди, цинка и железа, поглощающиеся ионообменной смолой никель и марганец проходят при этом через колонку. При последующей обработке AN соляной кислотой элюируется кобальт, а железо, медь и цинк остаются на анионите. Описаны также катионообменные методы в это.м случае поглощенный катионито.м кобальт элюируют с.месью органических растворителей с соляной кислотой, напри.мер ацетоно.м, метилизопропилкетоном и др. [c.62]

    Метод малочувствителен — 0,01 мг Со в 50 мл конечного раствора. Трехвалентное железо и медь мешают определению, но влияние этих элементов можно устранить восстановлением нх раствором 8пСЬ [316] или осаждением в виде сульфида меди и основного ацетата железа [853]. При этом удается определять кобальт в присутствии меньшего или равного количества никеля и при соотношениях марганца к кобальту 40, железа к кобальту < 125 и меди к кобальту <10. При фото.метрическом определении кобальта в виде хлорида следует измерять свето-поглащение при 625 ммк, в этих условиях хлоридные комплексы железа, никеля и медп поглащают очень незначительно [758]. [c.160]

    Кобальт в асболановых рудах определялся измерением оптической плотности растворов синего хлоридного комплекса кобальта [356]. Трехвалентное железо восстанавливается при помощи ЗпСЬ- Этот метод, электролитический метод и фотометрический метод с нитрозосолью дают хорошо совпадающие результаты. [c.180]

    Методы отделения кобальта от мешающих элементов (или наоборот) перед заключительным определением здесь менее многочисленны, чем при анализе руд и сплавов кобальта на железной основе. Обычно кобальту сопутствует в значительных количествах только какой-либо один элемент, составляющий основу сплава содержание других элементов невелико. Так, при определении кобальта в никеле или в сплавах с высоким содержанием последнего применяют следующие методы предварительного отделения или маскирования посторонних элементов. Железо экстрагируют в виде хлорида изопропиловым эфиром [1188], осаждают окисью цинка [109] или маскируют цитратом аммония [1417]. Медь связывают тиомочевиной [1417]. Для отделения кобальта от большей части никеля пользуются экстракцией роданидных [775], антипирин-[1518] или дианти-пирилметанроданидных [88] комплексов кобальта, осаждением диэтилдитиокарбамината [1200] или 1-нитрозо-2-нафтолата кобальта, поглощением хлоридного комплекса кобальта анионитом [1082]. В одной из работ рекомендовано [1002] перед [c.198]

    Этот метод используется в основном для отделения железа. Хлоридный комплекс л елеза экстрагируют диэтиловым эфиром [110, 447, 684, 882, 890, 985, 1046, 1238, 1285], метилизобутилкето-ном [63, 412, 745, 1288], изопропиловым эфиром [1056] или амилацетатом [1252] изб—7IVH 1. Железо окисляют предварительно до трехвалентного состояния. Во многих случаях количественное отделение железа не требуется, удаляют лишь основную его массу, а оставшиеся следы маскируют при помош и K N и три-этаноламина. Метод отделения железа в виде хлоридного комплекса использован при анализе чугуна [63, 110, 447, 1056, 1239, 1252, 1288], цемента [307] и других материалов. [c.49]

    Иногда прибегают к отделению основного компонента теми или иными методами. Например, при определении магния в металлических 2г, Ге и Си предварительно отделяют 2г осаждением в виде миндалята, Ге — экстракцией эфиром хлоридного комплекса, Си — электролизом [704]. Для выделения малых количеств магния применяют методы соосаждения, например соосаждают магний на оксихинолинате железа [704]. [c.166]


Смотреть страницы где упоминается термин Железа комплексы хлоридные: [c.100]    [c.15]    [c.115]    [c.154]    [c.133]    [c.253]    [c.236]    [c.404]    [c.113]    [c.134]    [c.214]    [c.142]   
Органические синтезы с участием комплексов переходных металлов (1979) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Железа комплексы

Железо хлоридные

Комплексы хлоридные

Хлоридный ИСЭ



© 2025 chem21.info Реклама на сайте