Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кекуле переходная

    Однако принцип переходного состояния, положенный в основу этой теории, известен в классической химии с давних пор. В общих чертах он был высказан еще Кекуле [77] в 1858 г., а затем Менделеевым в 1886 г. [c.314]

    Кроме реакций замещения в органических соединениях, обширную область нуклеофильного замещения представляет замещение лигандов в химии переходных металлов. Здесь встречаются координационные числа (к. ч.) выше четырех и пространственные фигуры более сложные, чем тетраэдр. Одна из возможностей связана с очень распространенным к. ч. 6 его пространственная форма — октаэдр, который, подобно тетраэдру, обусловливает возникновение оптической активности. После случая тетраэдрического углерода, где все развитие знаний о механизме происходило на основе структуры, данной Кекуле и Вант-Гоффом, очевидный следующий случай, по-видимому, — октаэдрические металлы, для которых аналогичным исходным пунктом является открытие Вернером их структуры. Это и есть причина для включения данной темы в симпозиум по органической химии проблема и метод возникли в органической химии, а их прямое продолжение лежит в этом следующем, высшем случае. [c.109]


    Легко понять, почему, несмотря на мезомерию ароматического ядра, валентные формулы, особенно сравнительно устойчивые структуры Кекуле, оказываются полезными для понимания превращений ароматического ядра, почему, например, имеет смысл вводить изогнутые стрелки в формулы Кекуле, хотя такие формулы сами по себе не могут объяснить устойчивости ароматического ядра. Если в химическом превращении, затрагивающем ароматическое ядро, или в переходном состоянии такого превращения электронные пары рассматриваются как преимущественно локализованные, то удобно [c.164]

    Первое промышленное использование катализатора было осуществлено в 1746 г. Дж. Робеком при камерном получении серной кислоты. В то время Берцелиус еще не ввел термина катализ , это произошло в 1836 г. Раннее развитие катализа в 800-е гг. происходило в промышленной неорганической химии и было связано с процессами получения диоксида углерода, триоксида серы и хлора. В 1897 г. П. Сабатье и Ж. Сандеран обнаружили, что никель является хорошим катализатором гидрирования. В своей книге Катализ в органической химии П. Сабатье [3] рисует блестящие перспективы развития катализа в начале XX в. В это время еще трудно было ответить на вопросы о переходных состояниях, адсорбции и механизмах каталитических реакций, но Сабатье уже ставил правильные вопросы. Оказалась плодотворной его идея о временных, неустойчивых промежуточных соединениях, образующихся при катализе. Он жаловался на неудовлетворительное состояние знаний, но уже в пе-риод с 1900 по 1920 г. появились успехи во многих областях науки. Это было время Оствальда, Гиббса, Боша, Ипатьева, Эйнштейна, Планка, Бора, Резерфорда и др. Незадолго до 1900 г. свой вклад в органическую химию внесли такие ученые, как Э. Фишер, Кекуле, Клайзен, Фиттиг, Зандмейер, Фаворский, Дикон, Дьюар, Фридель и Крафте. [c.14]

    Циклооктатетраен не относится к числу ароматических соединений, хотя в его молекуле, как и в молекуле бензола по Кекуле, имеются чередующиеся простые и двойные связи. Молекула цикло-октатетраена имеет форму ванны. Энергия перехода этой формы в плоскую много больше энергии резонансной стабилизации. Однако есть доказательства, что небольшие количества плоской формы существуют в равновесии с формой ванны. При восстановлении в неводных средах, например в диметилформамиде или ди-метилсульфоксиде, циклооктатетраен дает четыре полярографические волны [51]. Полярографические данные для небензоидных циклических соединений представлены в табл. 2.8. Первые две волны приписаны последовательным одноэлектронным стадиям, приводящим, соответственно, к образованию анион-радикала и дианиона. Первая стадия квазиобратима. Методом циклической вольтамперометрии можно выявить способность анион-радикала к окислению. Однако, чтобы окисление шло быстро, нужно заметно большее напряжение, чем то, какое соответствует восстановлению. Коэффициент переноса для катодной реакции значительно ниже 7г- Предполагают, что эта стадия включает плоское переходное состояние, приводящее к плоскому анион-радикалу. Действительно, полученный спектр ЭПР подобен спектру при восстановлении циклооктатетраена щелочным металлом. Вторая стадия, приводящая к плоскому дианиону, является быстрой и обратимой.  [c.97]


    Идея переходного состояния возникла не внезапно — она давно была подготовлена развитием теоретической органической химии. При обсуждении возможных механизмов реакций не раз всплывала модель Кекуле (1858) для переходного состояния (См. гл. I, 3). В 1901 г. Майкел, например, ссылался на кекулевские двойные молекулы , а позднее (1909) он и Вольгаст высказали предположение- [c.151]

    Хотя идея о существовании переходного состояния была высказана еще Кекуле в 1858 г. [89, с. 17], теория переходного состояния стала разрабатываться примерно с середины 1930-х годов (см. гл. УНТ, 2). В 30-е же годы появились и попытки исследования стереохимии этих состояний. Так, Ингольд и Хьюз на основе изучения бимолекулярных реакций нуклеофильного замещения при насыщенном атоме углерода пришли к выводу, что в этом случае образуется переходный комплекс, в котором три заместителя, не участвующие в реакции, лежат в одной плоскости, а уходящий и вступающий заместители находятся по разные стороны от этой плоскости. По аналогии Хьюз и Ингольд распространили это представление и на бимолекулярные реакции электрофильного замещения. Однако в 50-х годах Реутов и сотр. показали на примере элекТро-филъного замещения с участием ртутноорганических соединений, что конфигурация переходного комплекса в этом случае сохраняется, и что предположительно комплекс имеет вид четырехчленного цикла. [c.177]

    Реакционная способность длительное время была главным критерием ароматичности. Уже через год после публикации Кекуле о структуре бензола и об ароматических соединениях как структурно подобных бензолу Эйленмейером было выдвинуто представление о химическом подобии ароматических соединений [12]. Поскольку для бензола характерны реакции электрофильного замещения, именно способность к этим реакциям считалась, а в ряде работ и до сих пор считается, признаком ароматичности. Склонность ароматических соединений к реакциям замещения, а не присоединения, Т ендендия сохранять тип обусловлена их повышенной термодинамической устойчивостью, т. е. пониженным уровнем свободной энергии. Однако реакционная способность зависит не только от уровня свободной энергии основного состояния субстрата, но определяется разностью уровней основного и переходного состояний — свободной энергией активации. Энергия же переходйого состояния в общем случае может изменяться в столь широких пределах, что изменение верхней границы барьера активации полностью перекроет влияние изменения нижней границы, зависящей от степени ароматичности. [c.41]

    Применению теории резонанса для объяснения химических свойств особенно много внимания уделили Сыркин и некоторые другие советские химики. Их основные работы в этом отношении падают на период между рассмотренным обзором Полинга и выходом в свет упомянутой дюнографии Уэланда. Сыркину принадлежит редакция, вероятно, всех появившихся в советской печати переводных статей по теории резонанса, а также переводов монографий Полинга и Уэланда. В 1940— 1941 гг. Сыркин, Жуховицкий и Дяткина приступили к публикации серии статей по квантовой химии [41, 42], завершению которой, по-видимому, помешала война. Уже в первых статьях этой серии резонансным структурам придается то толкование, которое впоследствии подвергалось суровой критике под резонансом эти авторы понимают существование , а также суперпозицию различных состояний [41, стр. 943[. Более того, Дяткиной [43] было введено понятие о переходной структуре. Например, электронная структура молекулы НС1 представляет собой наложение трех структур ковалентной, ионной и переходной, когда электрон принадлежит обоим ядрам одновременно, примерно так, как в электронной структуре молекулярного иона водорода. По расчетам Дяткиной, в НС1 вес гомеополярной структуры 71%, ионной 6 , переходной 23%. Переходные структуры были, так сказать, теоретически обнаружены и в органических соединениях, например в бензоле. В нем при суперпозиции (сосуществовании) этих (кекулевских. —Г. Б.) состояний il- i и фо возникает переходная структура г)5,1 32. Она не может быть изображена химической формулой, но роль ее весьма существенна из-за обусловливаемого ею понижения общей энергии...Наличие переходных структур между структурами Дьюара и структурами Кекуле стабилизирует молекулу [42, стр. 123, 124]. Очевидно, судя по примеру с НС1, вклад переходных структур в энергию резонанса довольно значителен, однако, поскольку эти структуры не наглядны, теряется как раз основное преимущество, которое признавалось за теорией резонанса возможность представления электронного строения молекул привычными для химика валентными схемами. [c.239]

    Примерно такой же подход может быть применен и к расчету энтропии активированного комплекса во всяком случае для расчета его энтропш , а следовательно, и энтропии активации необходимо знать геометрию активированного комплекса. Между тем, хотя идея переходного состояния была высказана впервые Кекуле еще в 1858 г. [39, стр. 314], а теория активированного комплекса стала разрабатываться (Эйринг, Поляни и др.) примерно с середины 30-х годов, в области изучения геометрии таких комплексов было достигнуто очень мало, и гипотезы строились главным образом на данных химических методов исследования и носили качественный характер. Но в этой области — области более или менее правдоподобных гипотез о влиянии пространственных факторов на переходное состояние в различных реакциях замещения, присоединения и изомеризации — существует огромная литература. Этому вопросу, например, посвящена значительная часть большого сборника [42]. Много места уделено различным пространственным эффектам в капитальной монографии Инголда [28]. На международном симпозиуме в связи со 100-летием теории химического строения Бутле- [c.336]


    Во время такого переходного положения Бутлеров и выступил со своими взглядами, которые на месте прежнего хаоса в теоретической органической химии позволили воздвигнуть стройное и величественное здание новой теории — теории химического строения. Возникновение ее — это не только итог предшествующего развития науки, что не раз подчеркивал сам Бутлеров, но и закономерный итог эволюции его собственных теоретических представлений. Напомним, что в первые годы преподавания в Казанском университете Бутле ров придерживался устаревшей для того времени теории радикалов. Как мы уже говорили, после встречи с Зининым в 1854 г. он обратил внимание на работы Лорана и Жерара и, следовательно, познакомился с теорией типов, но, однако, продолжал читать лекции по старым руководствам. Поездка за границу, личные встречи с Вюрцем, Кекуле и другими химиками, развивавшими новые идеи после смерти Лорана (1853 г.) и Жерара (1856 г.), привели Бутлерова к переходу в лагерь сторонников теории типов, и в 1858 г. он стал читать курс органической химии, основанный на этой теории. В записях, сделанных по возвращении, имеется такое место Читать — классификацию по семействам, дуалистику и ее формулы — в сторону, расположение атомов тоже, водород между металлами. Основания классификации чисто химические, электрическую теорию в сторону, основываться на фактах [3, стр. 339]. [c.59]


Смотреть страницы где упоминается термин Кекуле переходная: [c.788]    [c.65]    [c.28]    [c.28]    [c.367]   
Химические приложения топологии и теории графов (1987) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Кекул

Кекуле



© 2024 chem21.info Реклама на сайте