Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильность Область

    С практической точки зрения электрофильное замещение в настоящее время является наиболее важным из реакций замещения для ароматических углеводородов. В этот класс включаются такие хорошо известные реакции, как алкилирование, ацилирование, нитрование, сульфирование и галоидирование. Этот класс реакций замещения привлек наибольшее внимание химиков, интересующихся теоретической стороной химии ароматических соединений. Поэтому в настоящей главе особое внимание уделено электрофильным реакциям замещения и дано более краткое описание развивающимся областям нуклеофильных и свободно-радикальных реакций замещения. [c.392]


    В присутствии галоидов или подобных им электроотрицательных заместителей в кольце становится возможной вся область реакций нуклеофильного замещения, которые не идут с самими исходными углеводородами. Эти реакции замещения распадаются, естественно, на два различных класса 1) класс, включающий замещение неактивированных , и 2) класс реакций, в которых замещению подвергается активированный заместитель. [c.470]

    В то время как мы, как кажется, хорошо продвигаемся по пути к полному пониманию электрофильного замещения, свободно-радикальное и нуклеофильное замещения неактивированных ароматических соединений представляют открытую малоисследованную область, которую предстоит разрабатывать в будущем. [c.481]

    Таким образом, при получении очень нуклеофильных амидных анионов катализатор может действовать одним из двух способов либо 1) переносить гидроксид-ион, осуществляющий депротонирование, в органическую фазу, либо 2) убирать де-протонированную молекулу с поверхности раздела фаз. Эти предположения находят подтверждение в большинстве исследований, выполненных в данной области. Действительно, в литературе имеется только несколько публикаций, в которых сообщается об алкилировании неактивированной НН-связи в присутствии четвертичных аммониевых катализаторов. В присутствии водных растворов гидроксидов калия или натрия были проалкилированы 1,3-дихлорбутеном-2 и бензилхлоридом раз- [c.160]

    Решающим для химического поведения молекулы углевода (и полиола) является наличие большого числа электроотрицательных групп эти группы вызывают соответствующие индукционные эффекты. И если область ароматических соединений можно назвать царством эффекта сопряжения, то химия углеводов есть область индукционных эффектов [31]. Наличие большого числа гидроксильных групп как бы обедняет электронную плотность уг-лерод-углеродных связей молекулы углевода и полиола, наводит на углеродные атомы дробный положительный заряд, результатом чего является облегчение нуклеофильной атаки молекулы и легкость разрыва связи С—С  [c.78]

    С обратной картиной, когда лимитирующий участник реакции-субстрат, приходится сталкиваться при катализе кислотами. Кислоты катализируют реакции, как правило, путем перевода одного из субстратов, являющегося основанием, в протонированную форму, т. е. в сопряженную кислоту. Подобно присоединению иона металла, присоединение протона, создавая положительный заряд в определенной области молекулы, повышает ее электрофильные свойства н облегчает реакцию с нуклеофильным компонентом. Например, в кислой среде облегчается гидролиз сложных эфиров кислот, поскольку карбонильная группа протонируется и электронная плотность оттягивается от атома углерода, что облегчает последующее взаимодействие с нуклеофильной молекулой воды [c.313]


    При обработке ароматических нитросоединений цианид-ионом происходит кине-замещение (см. разд. 13.3) отщепляется нитрогруппа и в молекулу вводится карбоксильная группа, причем всегда в орто- и никогда в мета- или пара-положение п() отношению к уходящей группе. Область применения этой реакции, носящей название перегруппировки Рихтера, весьма разнообразна [198]. Как и в случае других реакций нуклеофильного ароматического замещения, наилучшие результаты получаются при наличии электроноакцепторных групп в орто- и па-ра-положениях, однако выходы низкие, обычно не менее 20 % и никогда не выше 50 %, [c.39]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Применения к анализу реакционной способности, основанные на корреляции областей максимальной концентрации электронного заряда, определяемых лапласианом V p(r) с направлениями электрофильной и нуклеофильной атак, обсуждены в работе [13 ]. — Прим. перев. [c.70]

    Реакция с нуклеофильными агентами может происходить па двойной углерод-углеродной связи, аналогично тому как это происходит с карбонильной группой, если двойная связь находится а,р-положении к карбонильной или подобной ей группе. В таких системах л-электроны образуют электронное облако, распространяющееся по всей областа ненасыщенности [см. схему (В.39)  [c.202]

    В органической химии в качестве синтетического эквивалента нуклеофильного синтона Н наиболее часто используют комплексные гидриды металлов. Последние приобрели в настоящее время исключительное значение прежде всего благодаря тому, что реакции с ними протекают в мягких условиях, имеют высокую селективность и дают хороший выход продуктов. Введенные более 50 лет назад в практику органического синтеза, комплексные гидриды резко расширили область применения реакций восстановления. [c.103]

    Применение тетраметилэтилендиамина (ТМЭДА) совместно с алкиллитиевыми соединениями привело к расширению области использования реакции присоединения [61]. ТМЭДА дает координационное соединение с катионом лития, в результате чего образуется более нуклеофильный карбанион. Например, при использовании ТМЭДА получают более высокий выход в следующей реакции [62]  [c.150]

    Все это указывает на то, что предстоит еще большая работа по переведению на условия межфазного катализа многих нуклеофильных реакций. Несомненно, предстоит еще многое сделать и в области изучения механизма межфазного катализа. [c.166]

    Одним из наиболее употребительных типов реакций в этой области являются реакции нуклеофильного заме-ш,ения при одном из углеродных атомов производного моносахарида. Вот обш,ая схема протекания таких реакций  [c.127]

    На основании ИК спектров <о-оксинитрилов (3.1), в которых наряду с поглощением нитрильной группы наблюдается поглощение в области 1640-1780 см , относимое [345] к валентным колебаниям С-Мч вязи, сделано заключение о существовании таутомерного равновесия (3.1) (3.2). При изучении таких взаимодействий показано [3421, что с повышением нуклеофильности группы ОН или электрофильности углерода нитрильной группы увеличивается стабилизация циклической формы. Возможна дальнейшая стабилизация имина (3.2) за счет ароматизации системы или образования енамина (3.3). Сильные электроноакцепторные заместители при -углеродном атоме полностью сдвигают равновесие в сторону енаминной формы [346]. Данные [340,341] свидетельствуют о необратимости циклизации, кроме отдельных примеров, которые будут рассмотрены дальше. [c.56]

    Хорошо извостыо, что ПОН фенилдиазония можно превратить п значительное число производных (фенол, хлор-, бром- и иодбензол и т. д.) при разложении его в водных растворах в присутствии подходящего нуклеофильного реагента. Разложение солянокислой соли диазония в разбавленном растворе соляной кислоты следует кинетическому выражению для реакций первого порядка в широкой области концентраций от 0,0008 до 0,4 моля, считая на соль диазония [90J. Константа удельной скорости проявляет относительно малое увеличение (от 1,9 10 сек для наиболее разбавленных растворов до 2,6 сек. для наиболее концентрированных) с увеличением концентрации соли. С другой стороны, изменение концентрации заметно сказывается на изменении состава продуктов реакции. В наиболее разбавленных растворах выход фенола составляет 95%, но он падает до 24% в более концентрированных растворах, а основным продуктом становится хлорбензол. [c.476]


    Имеющиеся экспериментальные данные показывают, что, действительно, для субстратов с первичными радикалами и метилом реакции протекают по механизму 5 2, с третичными — по 5л-1. Соединения, содержащие вторичные радикалы, и некоторые соединения бензильного типа относятся к пограничной области. В реакциях замещения первичных галогенопроизводных обнаружено влияние заместителей у -углеродного атома объемные заместители препятствуют образованию переходного состояния и тем самым тормозят реакцию. Так, например, реакции неопентилхлорида (СНз)зССН2С1 с нуклеофильными реагентами протекают значитель- [c.93]

    Однако применяемая в качестве катализатора кислота про-тоннрует не только кислородный атом карбонила, но и молекулы нуклеофильного участника реакции, превращая его в сопряженную кислоту. Поэтому оптимальное значение pH для катилизируемых кислотами реакций лежит в области, где карбонильная группа уже достаточно сильно протонирована, а основный партнер реакции еще не лишен н клеофильной активности. По этому же типу реакции катализируются карбоновыми кислотами и такими растворителями, как спирты и вода. [c.51]

    За короткий (немногим более десяти лег) срок внедрения в исследовательскую практику МФК, наряду с победным шествием химии краунэфиров, существенно преобразил органическую химию, проникнув и в некоторые области нефтехимического синтеза. Он открыл новые этапы в развитии рг1бот по нуклеофильному присоединению, элиминированию и промышленному производству олефиновых и ацетиленовых соединений, по химии галокарбенов и малых циклов, углеводному синтезу, окислению С—Н-связей и т. д. [c.248]

    В обеих реакциях нуклеофилом является нитрит-анион— 0 — N = 0<-> <->O = N —О , который обладает двумя нуклеофильными центрами —атомами кислорода и азота. Это амбидентный анион. В 5лг2-реакциях он реагирует более нуклеофильным атомом азота с образованием нитросоединения (пример а ). В условиях Sjvl-реакции образующийся карбкатион взаимодействует с нитрит-анионом по атому кислорода, несущему отрицательный заряд. В этом случае продуктом реакции является эфир азотистой кислоты (пример б ) (Ag+ сдвигает реакцию в Sjyl-область). Более подробно об Зд -реакциях с амбидентными анионами см. [7], с. 219. [c.221]

    Не менее важно наличие широкого набора реагентов для тех или иных Гетеролитических реакций образования связи С—С. В этой области, пожалуй, наибольшее разнообразие характерно для нуклеофильных реагентов. Так, известны десятки типов металлоорганичсских реагентов, которые содержат один и тот же органический остаток и различаются лишь природой металла и связанных с ним лигандов [4]. Подобные, в сущности очень сходные реагенты, разработанные для сочетания одного и того же нуклеофильного остатка с электрофильными реагента.ми, на самом деле могут значительно различаться по своей нуклсофильности, основности, способности к комплексообразованию и т. д. Благодаря этому можно решительным образом влиять на селективность реакций образования связи С—С в применении к взаимодействию как с электрофильными субстратами разных типов, так и С полидентатными электрофилами. Так, взаимодействие классических реагентов Гриньяра со сложными эфирами или хлорангидридами не может бьггь остановлено на стадии образования кетона, и продуктами такой реакции неизменно являются третичные спирты. Б то же время замена магние- [c.169]

    В генерированном из ацетата 68 кетилрадикале А 05т(Н1)Ь-заместитель занимает стерически предпочтительную а-область молекулы, причем после элементарного акта циклизации взаимное отталкивание частичных отрицательных зарядов нуклеофильного кетильного атома кислорода и образующегося метиленового радикального центра в радикале В способствует их йнтм-ориентации [c.409]

    Исследование скоростей реакции карбоксиалкилирования, проведенное на примере аминов различной основности (фенил-аминоуксусной и метиламиноуксусной кислот), показало, что скорость взаимодействия обоих аминов с монохлоруксусной кислотой возрастает с увеличением значения pH, как этого и следовало ожидать для реакции нуклеофильного замещения [4]. Скорость реакции возрастает с увеличением основности исходного амина, взаимодействие метиламиноуксусной кислоты с монохлоруксусной кислотой протекает с большей скоростью, чем фениламиноуксусной кислоты, даже в области значений рН = = 8—9, когда первый амин находится в форме бетаина. Реакци- [c.15]

    Следует отметить, что здесь мы упомянули только о стабильных нуклеофильных, преимущественно гетероароматических карбенах, которые являются в основном состоянии синглетными, в то время как химия триплетных карбенов представляет особую область, получившую в последнее время также значительное ускорение (здесь наибольший вклад внесли работы Томиоки и сотр. [18]). Однако, устойчивость триплетных карбенов пока не может идти в сравнение с нуклеофильными синглетными карбенами (время жизни наиболее стабильного три-плетного карбена (2-бром-4-трет-бутил-6-дурилфенил)(2,6-бмс-трифторметил-4-т/ ет-бутил)карбен - до 16 мин при комнатной температуре в бензольном растворе [18], в то время как многие синглетные карбены хранятся месяцами без заметных изменений). Особую область представляют также гетероароматические электрофильные карбены, среди которых пока не найдено стабильных вариантов, но идет поиск таких структур и способов их получения. [c.280]

    До недавнего времени считалось, что пептидная ЫН-СО-группа относительно инертна. Вследствие оттягивания электронов на кислород атом азота становится малоспособным к нуклеофильным реакциям, а водород — малоподвижным. Исследование пептидов и аминоацильных производных аминокислот, содержащих дополнительные функциональные группы, особенно таких, у которых они расположены в смежном положении, открыли новую страницу в области возможных превращений пептидов. Это относится в первую очередь к пептидам, содержащим цистеин и оксиаминокислоты, а также к пептидам длкарбоновых аминокислот. [c.505]

    Свобода и др. [140] выполнили факторный анализ матриц, данных, содержащих 35 физико-химических констант и эмпирических параметров полярности (см. гл. 7) 85 растворителей. На этой базе был получен ортогональный набор четырех параметров, которые можно связать с полярностью растворителя, выраженной в виде функции Кирквуда (е,-—1)/(2бг+1), поляризуемостью растворителя, выраженной в виде функции показателя преломления пР-— )1 п + ), а также с льюисовой кислотностью и основностью растворителя. Отсюда следует, что для количественного эмпирического описания влияния растворителя на химические реакции и поглощение света в общем случае необходимы четыре параметра два для описания неспецифической сольватации, обусловленной полярностью и дисперсионными взаимодействиями, а два других — для описания специфической сольватации, связанной с электрофильной и нуклеофильной активностью растворителя. Для корреляции эффектов растворителей с помощью только одного эмпирического параметра лучше всего пользоваться параметром т(30), значения которого определяют, изучая поглощение сольвато-хромного красителя в УФ- и видимой областях (см. разд. 6.2.1 и 7.4). [c.120]

    Несмеянов A.H. Присоединение нуклеофильных реагентов к fl-аианвинилкетонам. - В кн. Исследования в области органической химии. М. Наука, 1971, с. 209-217. [c.162]

    Нельзя, к сожалению, сказать, что поиск примеров полифункционального катализа был всегда успешным. Только в нескольких случаях совместное действие общей кислоты и общего основания оказывалось зффективнее каждого из них в отдельности. Аналогичная ситуация наблюдается и при комбинации нуклеофильного и общего основного, а также нуклеофильного и электрофильного катализа. В то же время чрезвычайно непросто определить относительное увеличение скорости процесса при введении второго катализатора, так как, с одной стороны, под рукой исследователя не всегда имеются необходимые количественные данные, а с другой — при таких расчетах выбор стандартного состояния или, иными словами, точки отсчета не всегда бывает однозначным. Позтому теперь целесообразно перейти к рассмотрению более удобной в этом смысле области — полифункциональному катализу бифункциональными молекулами. [c.284]

    Реакционная способность производных бензола может быть качественно объяснена в рамках теории электронных смещений. Например, атом хлора, освобожденный от своих валентных электронов, имеет заряд +7, а аналогичный атом водорода — заряд +1. Следовательно, при замене водорода на хлор область относительно низкой плотности положительного заряда заменяется областью относительно высокой плотности, что приводит к сдвигу всей электронной системы молекулы по направлению к месту замещения. Этот сдвиг облегчает удаление протона из кислой группы в молекуле или атаку нуклеофильным реагентом (например, гидроксильным ионом при гидролизе эфиров). Одновременно затрудняется атака электрофильным реагентом, например ионом нитрония N02 при нитровании. Если замещению хлором или другим электроотрицательным элементом подвергается водород у насыщенного атома углерода, а место замещения настолько удалено от реакционного центра, что элиминируются короткодействующие влияния, связанные с объемом атома хлора, то общий эффект заместителя практически сводится к индукционному. [c.482]

    Электрофильные замещения в ферроцене широко известны. Исследования нанюй группы в этой области я неоднократно докладывал и отсылаю к опубликованным докладам и обзорам [1]. Главная масса известных производных ферроцена получена электрофильным замещением и дальнейшим преобразованием замещенных продуктов. Реакции радикального и нуклеофильного замещения в этом отношении исследованы меньше. Галоген галогенферроцеиов обладает свойствами ароматического неподвижного галогена, но, как мы нашли, в присутствии солей меди становится обменоспособным и легко замещается на анионоидные группы. Ниже сконцентрированы некоторые полученные мной, Сазоновой, Дроздом и сотр. [2] результаты такого обмена  [c.51]


Смотреть страницы где упоминается термин Нуклеофильность Область: [c.450]    [c.496]    [c.23]    [c.59]    [c.56]    [c.15]    [c.18]    [c.173]    [c.1277]    [c.1383]    [c.1448]    [c.511]    [c.37]    [c.683]    [c.380]    [c.18]    [c.333]    [c.89]    [c.42]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.424 ]




ПОИСК







© 2025 chem21.info Реклама на сайте