Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотистый баланс

    Вопросы азотистого равновесия, положительного п отрицательного азотистого баланса подробно рассматриваются в курсе физиологии. [c.413]

    Одно из характерных нарушений азотистого обмена—белковая недостаточность, являющаяся следствием не только дефицита белка, но и ряда тяжелых заболеваний даже при достаточном поступлении белка с пищей. Белковая недостаточность у человека развивается как при полном и частичном голодании, так и при приеме однообразного белкового питания, когда в диете преобладают белки растительного происхождения, биологическая ценность которых значительно ниже ценности белков животного происхождения. Результатом этих состояний являются развитие отрицательного азотистого баланса, гипопротеинемии (снижение концентрации белков в сыворотке крови до 50—30 г/л в норме 65—85 г/л) и нарушения колловдно-осмотического и водно-солевого обмена (развитие отеков). При тяжелых формах пищевых дистрофий, например при заболе- [c.465]


    Как определить азотистый баланс и вычислить, какое количество белка распалось в организме  [c.214]

    Азотистый баланс и азотистое равновесие. .... [c.340]

    Различают положительный, отрицательный азотистый баланс и азотистое равновесие. [c.361]

    Азотистым балансом называется соотношение между количеством азота, введенного в организм с пищей, и количеством азота, выделенного из организма с мочой, калом и потом. Если число граммов азота, введенного с пищей, равно количеству граммов выделенного азота, то организм находится в состоянии азотистого равновесия. Если количество введенного азота превышает количество выделенного, азотистый баланс называется положительным. Положительный азотистый баланс указывает на накопление белка в организме и наблюдается в молодом возрасте и в период восстановления организма после перенесенных заболеваний. [c.208]

    Исключение какой-либо незаменимой аминокислоты из пищевой смеси сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста, нарушениями функции нервной системы и др. В опытах на крысах были установлены следующие величины незаменимых аминокислот, необходимых для оптимального роста, относительно триптофана, принятого за единицу лизина 5 лейцина 4 валина 3,5 фенилаланина 3,5 метионина 3 изолейцина 2,5 треонина 2,5 гистидина 2  [c.414]

    Повышенная функция щитовидной железы (гиперфункция) вызывает развитие гипертиреоза, известного в литературе под названием зоб диффузный токсический (болезнь Грейвса, или базедова болезнь). Резкое повышение обмена веществ сопровождается усиленным распадом тканевых белков, что приводит к развитию отрицательного азотистого баланса. Наиболее характерным проявлением болезни считается триада симптомов резкое увеличение числа сердечных сокращений (тахикардия), пучеглазие (экзофтальм) и зоб, т.е. увеличенная в размерах щитовидная железа у больных отмечаются общее истощение организма, а также психические расстройства. [c.267]

    Энергетическая ценность пищи оказывает определенное влияние на белковый обмен, контролируемый азотистым балансом. Так, если потребляемая энергия пищи ниже минимального уровня, то наблюдается увеличение экскреции азота, и, наоборот, при увеличении энергетической ценности пищи экскреция азота с мочой снижается. [c.548]

    Поскольку основная масса азота организма представлена азотом аминокислот, принято считать, что для оценки состояния обмена белков достаточно точным критерием может быть определение азотистого баланса — разницы между введением с пищей азота и выведением его в виде конечных продуктов, выраженных в одинаковых единицах (г/сут). [c.361]


    Если количество выводимого из организма азота меньше количества азота, вводимого с пиш ей, — это положительный азотистый баланс. Такое состояние характерно для молодого, растущего организма, а также для женщин во время беременности. Оно свидетельствует о том, что синтетические процессы превалируют над процессами распада белков. [c.361]

    Мы видели, что коэффициент изнашивания у взрослого человека составляет около 23 г белка. Следовательно, теоретически рассуждая, человеку нужно около 23 г белка, чтобы покрыть расход белка при распаде его в органах и тканях. Поставлены были опыты на людях с дачей им постепенно увеличиваемых количеств белка на фоне безбелковой диеты. Оказалось, что отрицательный азотистый баланс при постепенном увеличении белка в рационе уменьшается, но пе достигает азотистого равновесия и при потреблении 25 г белка в сутки. Азотистое равновесие устанавливается при приеме более высоких количеств белка в пище. Таким образом, необходимо больше белка, чем того требует так называемый коэффициент изнашивания . [c.305]

    При отрицательном азотистом балансе количество вьщеляемого азота превышает количество азота, поступающего в организм в течение суток. Это состояние встречается при голодании, белковой недостаточности, при тяжелых заболеваниях, когда происходит интенсивный распад белков у больных, получающих полноценную белковую пищу, а также при старении. [c.361]

    Исключение какой-либо незаменимой аминокислоты приводит к отрицательному азотистому балансу и расстройству нервной системы (общая слабость, головокружение, раздражительность, нарушение кожной чувствительности, а иногда и болевые явления). [c.309]

    В состоянии азотистого равновесия количество азота, вьщеляемое из организма, равно его количеству, поступающему с пищей. В этом случае азотистый баланс равен нулю. Состояние азотистого равновесия характерно для здорового взрослого человека, находящегося на полноценной диете с нормальным суточным содержанием белка. [c.361]

    Азотистый баланс может быть положительным, равным нулю или отрицательным. [c.304]

    АЗОТИСТЫЙ БАЛАНС И АЗОТИСТОЕ РАВНОВЕСИЕ [c.208]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]

    В случае, когда количество введенного азота меньше, чем количество выделенного, организм находится в отрицательном азотистом балансе. Отрицательный азотистый баланс указывает, что процессы распада преобладают над процессами синтеза и организм теряет запасы белка. Отрицательный азотистый баланс наблюдается при старении организма, при различных истощающих заболеваниях, голодании или неполноценном белковом питании. [c.208]

    В данной работе для того, чтобы познакомиться с методом Кьельдаля и расчетом, была взята случайная порция мочи и количество мочи, выделенное за сутки, ориентировочно принято за 1,5 л. При анализах, связанных с изучением азотистого баланса, это недопустимо, так как отдельные порции суточной мочи всегда содержат различные количества азота,, и суточное количество мочи варьирует в щироких пределах— от 1 до 2 у и более. Количество мочи зависит от количества принятой жидкости, от задержки воды в организме и других причин, а количество азота — от количества принятой белковой пищи и интенсивности азотистого обмена. [c.213]

    Для изучения и понимания хода и состояния обмена белков большое значение имеет определение азотистого баланса, т. е. разницы [c.303]

    Биохимические функции. Высокая гидрофобность Т3 и является основанием для действия их по цитозольному механизму. Оказалось, что рецепторы тиреоидных гормонов в основном находятся в ядре и образованные гор-мон-рецепторные комплексы, взаимодействуя с ДНК, изменяют функциональную активность некоторых участков генома. Результатом действия Т3 и Т4 является индукция процессов транскрипции и, как следствие, биосинтез многих белков. Эти молекулярные механизмы лежат в основе влияния тире-оидньгх гормонов на многие обменные процессы в организме. Тиреоидные гормоны обладают выраженным анаболическим действием, важным проявлением которого является повышение поглощения кислорода тканями организма, а также повышение эффективности Ка /К -АТФ-азного насоса. Гормоны щитовидной железы участвуют в регуляции обмена липидов, в частности холестерина, углеводов, а также водно-солевого обмена. Гипертиреоз проявляется в патологической интенсификации основного обмена, гипертонии, тахикардии. Это происходит на фоне гипергликемии, глюкозурии в условиях отрицательного азотистого баланса. Гипофункция щитовидной железы проявляется в резком снижении скорости метаболических процессов, гипотонии и брадикардии. Врожденный гипотиреоз приводит к замедлению умственного развития в результате поражения ЦНС. Приобретенный гипотиреоз может [c.152]


    Питательные свойства белков можно оценить с помощью двух характеристик-хил< ческой ценности и биологической ценности. В первом случае после полного гидролиза определяют аминокислотный состав белка и сравнивают его со стандартом-белком, полученным из молока и яиц. При этом определяют потенциальную химическую ценность белка. Мерой биологической ценности белка служит величина, обратно пропорциональная количеству данного белкового продукта, которое необходимо для поддержания азотистого баланса у взрослого человека или экспериментального животного, т. е. состояния, при котором количество поступающего в организм азота точно соответствует его количеству, выводимому с мочой и калом. Если в данном белке есть все незаменимые аминокислоты в необходимых пропорциях и все они могут всасываться в кишечнике, то биологическая ценность такого-белка условно принимается равной 100. Для полностью перевариваемых белков с неполным содержанием аминокислот или с полным содержанием аминокислот, но не полностью перевариваемых это значение будет заведомо ниже. В соответствии с этим критерием биологическая ценность белка, в котором отсутствует хотя бы одна незаменимая аминокислота, будет равна нулю. Если белок характеризуется низкой биологической ценностью, он должен присутствовать в пище в очень больших количествах, чтобы обеспечить потребности организма в незаменимой аминокислоте, содержание которой в таком белке минимально. Остальные аминокислоты будут поступать в организм при этом в количествах, превышающих его потребности. Лишние аминокислоты будут подвергаться в печени дезаминированию и превращаться в гликоген или жир либо просто сгорать в качестве топлива. [c.824]

    Кормовые фосфаты улучшают азотистый баланс и повышают использование минеральной части рационов (фосфора и кальция). [c.320]

    Если азота выводится из организма больше, чем его было введено, то имеет место отрицательный азотистый баланс. Это значит, что в организме происходит распад белков, органов и тканей, который не компенсируется белками пищи. Отрицательный азотистый баланс всегда наблюдается при различных заболеваниях, связанных с усиленным распадом белков тканей, а также при недостаточном поступлении белков с пищей (белковое голодание). [c.322]

    Если азота выводится из организма меньше, чем его было введено, т. е. происходит задержка азота в организме, то имеется положительный азотистый баланс. В норме это имеет место в молодом, интенсивно растущем организме или у женщин во время беременности. Такой баланс показывает, ч. о происходит накопление белков в тех или иных органах и тканях. [c.304]

    Азотистый баланс может быть равен нулю, если азота выводится из организма ровно столько, сколько его поступило с пищей. В таком случае говорят об азотистом равновесии. [c.304]

    Все формы белкового голодания характеризуются прежде всего отрицательным азотистым балансом (стр. 304). Расход белка в результате жизнедеятельности организма не может быть возмещен поступлением его извне, и организм начинает страдать от белковой недостаточности. В клиниках производилось изучение состава крови и мочи при подобных состояниях. [c.369]

    Усиленное питье обычно приводит к резкому повышению обмена веществ. При избыточном потреблении воды происходит усиленный распад белков в организме. Выделение азота повышается почти на 20% и даже наступает отрицательный азотистый баланс. Сильно увеличивается выделение солей серной и фосфорной кислот. [c.388]

    Для изучения и понимания хода и состояния обмена белков большое значение имеет определение азотистого баланса, т. е. разницы между количеством азота, введенного в организм с пищей, и количеством азота, выведенного из организма в виде конечных азотистых продуктов обмена, главным образом с мочой и в меньшей степени с калом и потом. [c.321]

    К наиболее ранним симптомам авитаминоза B относятся нарушения моторной и секреторной функций пищеварительного тракта потеря аппетита, замедление перистальтики (атония) кишечника, а также изменения психики, заключающиеся в потере памяти на недавние события, склонности к галлюцинациям отмечаются изменения деятельности сердечно-сосудис-той системы одышка, сердцебиение, боли в области сердца. При дальнейшем развитии авитаминоза выявляются симптомы поражения периферической нервной системы (дегенеративные изменения нервных окончаний и проводящих пучков), выражающиеся в расстройстве чувствительности, ощущении покалывания, онемения и болей по ходу нервов. Эти поражения завершаются контрактурами, атрофией и параличами нижних, а затем и верхних конечностей. В этот же период развиваются явления сердечной недостаточности (учащение ритма, сверлящие боли в области сердца). Биохимические нарушения при авитаминозе B проявляются развитием отрицательного азотистого баланса, вьщелением в повышенных количествах с мочой аминокислот и креатина, накоплением в крови и тканях а-кетокислот, а также пентозосахаров. Содержание тиамина и ТПФ в сердечной мышце и печени у больных бери-бери в 5-6 раз ниже нормы. [c.222]

    При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание—диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена. Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует). К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови. При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно. Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина. Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее). [c.269]

    Имеются экспериментальные доказательства прямой и опосредованной связи белкового обмена с обеспеченностью организма витаминами, в частности В , В,, В , РР и др. Обмен белков регулируется, кроме того, деятельностью желез внутренней секреции. Гормоны определяют в известной мере направление (в сторону синтеза или распада) и интенсивность белкового обмена. Например, после введения АКТГ и гормонов щитовидной железы наблюдается интенсивный распад тканевых белков. Другие гормоны, в частности СТГ, андрогены и эстрогены, напротив, стимулируют анаболические реакции и способствуют синтезу белка. Введение некоторых гормонов коркового вещества надпочечников вызывает диспро-теинемию и приводит к отрицательному азотистому балансу, что некоторые авторы связывают со стимулированием глюконеогенеза из углеродных скелетов аминокислот (после дезаминирования последних—см. далее). [c.412]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    Совершенно естественно встал вопрос о пределах возможного увеличения и уменьшения количества белка в пище. Если кормить животное таким образом, чтобы покрыть полностью энергетические потребности организма углеводами и жирами, т. е. исключить совсем белки из пищи, то азотистый баланс становится отрицательным. При безбелковой диете в течение всего времени питания организм все же выделяет с мочой азотистые вещества. Так как организм в данном случае не получает белка извне, то это явление указывает на то, что в организме беспрестанно происходит распад белка собственных органов и тканей. Распад собственных белков организма связан с функциональной деятельностью органов, с выделением образовавшихся из белков секретов и экскретов (ферментов пищеварительных соков, некоторых гормонов и т. д.), отмиранием и удалением некоторых тканей (удаление волос и ногтей, слущиваиие эпидермиса) и т. п. Азотистый баланс при такого рода питании остается все время отрицательным, и если опыт безбелкового питания длится долго, то это неизбежно приводит к смерти животного. [c.304]

    Таким образом, скармливание вьщеленного из кукурузного зерна белка зеина, не содержащего двух незаменимых аминокислот, приводит к остановке роста, уменьшению массы тела животньгх и развитию отрицательного азотистого баланса. [c.415]


Смотреть страницы где упоминается термин Азотистый баланс: [c.158]    [c.591]    [c.418]    [c.383]    [c.209]    [c.383]    [c.309]    [c.322]   
Биохимия (2004) -- [ c.361 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.824 ]

Биологическая химия Издание 3 (1960) -- [ c.303 ]

Биологическая химия Издание 4 (1965) -- [ c.321 ]

Биохимия Издание 2 (1962) -- [ c.226 , c.424 , c.473 ]

Биохимия человека Т.2 (1993) -- [ c.276 , c.277 , c.306 , c.307 ]

Биохимия человека Том 2 (1993) -- [ c.276 , c.277 , c.306 , c.307 ]

Биологическая химия (2004) -- [ c.330 , c.331 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.233 ]




ПОИСК







© 2025 chem21.info Реклама на сайте