Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПИЩА КАК ИСТОЧНИК ЭНЕРГИИ

    Жиры и масла природного происхождения — важные составные части нашей пищи и источники энергии. Твердые жиры животного происхождения являются эфирами преимущественно насыщенных кислот, жидкие растительные масла имеют в составе молекул группы —НС=СН —. Различие в температурах плавления связано с тем, что насыщенные углеводородные цепи могут быть упакованы плотнее, чем ненасыщенные, тем более, что непредельный фрагмент в жирных кислотах имеет всегда конфигурацию, поэтому цепи изогнуты и не могут плотно прилегать друг к другу. Животные жиры ценятся выше, чем масла, поэтому значительное количество масел превращают гидрированием в маргарин (см. разд. 27.1.4.2). В последнее время было установлено, что растительные масла лучше, чем жиры, усваиваются организмом и снижают уровень холестерина в крови, однако этот вопрос еще далеко не ясен. [c.723]


    Является одной из первых крупных публикаций по химии окружающей среды. Она написана под редакцией Дж. Бокриса большой группой специалистов из разных стран. Широко освещены химические и технологические аспекты охраны окружающей среды. Рассмотрены вопросы очистки сточных вод и производственных выбросов в атмосферу, влияния загрязнений на природные процессы, а также актуальные проблемы использования природных ресурсов, химических источников пищи, источников энергии, не загрязняющих среды, и т. п. [c.4]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]

    Углеводы, вообще говоря, являются продуктами фотосинтеза растений. Там они выполняют в первую очередь роль строительного материала, но многие из них становятся пищей для других организмов, где они служат главным образом источником энергии. [c.478]

    Белки, жиры, углеводы - основные компоненты пищи и источники энергии для всего живого Другие вещества — витамины и минеральные соли — не менее важны, хотя они и нужны организму в микроскопических количе- [c.269]

    Ферментная технология включает продукцию, выделение, очистку, использование в растворенной форме и, наконец, применение в иммобилизованном виде ферментов в широком круге реакторных систем. Ферментная технология, вне всякого сомнения, обеспечит в будущем разрешение наиболее насущных проблем, стоящих перед обществом например, обеспечением пищей, источниками энергии (ее сохранением и использованием с максимальной эффективностью), а также улучшением окружающей среды. [c.77]


    Б. ПИЩА КАК ИСТОЧНИК ЭНЕРГИИ [c.238]

    В определении понятия витамины до сих пор существуют разногласия, поскольку имеется ряд примеров, когда витамины оказываются незаменимыми факторами питания для человека, но не для некоторых животных. В частности, известно, что цинга развивается у человека и морских свинок, но не у крыс, кроликов и ряда других животных при отсутствии в пище витамина С, т.е. в последнем случае витамин С не является пищевым или незаменимым фактором. С другой стороны, некоторые аминокислоты (см. главу 2), как и ряд растительных ненасыщенных жирных кислот (линолевая, линоленовая и др.), оказались незаменимыми для человека, поскольку они не синтезируются в его организме. Однако в последнем случае перечисленные вещества не относятся к витаминам, так как витамины отличаются от всех других органических пищевых веществ двумя характерными признаками I) не включаются в структуру тканей 2) не используются организмом в качестве источника энергии. [c.205]

    Б. Пища как источник энергии [c.239]

    История металлопорфириновых комплексов на этом еще не заканчивается. К знаменитому закону Паркинсона можно было бы добавить еще один подпункт организмы развиваются, чтобы приспособиться к имеющимся источникам пищи. Когда появились новые источники энергии, стали развиваться многоклеточные организмы. Но при этом возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться просто диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда. [c.260]

    Углеводы в форме крахмала являются важнейшими источниками энергии в пище. Для получения этой энергии мы либо употребляем в пищу зерна, в которых накапливается крахмал, либо скармливаем эти зерна животным, которые синтезируют мясные белки, а затем съедаем их. В любом случае потребляемая нами энергия в конце концов поставляется крахмалом, полимерным продуктом фотосинтеза. Целлюлоза входит в состав хлопка и льна, а также искусственных продуктов - ацетата целлюлозы и вискозного волокна. Дерево, из которого сделана наша мебель, также содержит целлюлозу. Бумага этой книги получена в процессе обработки целлюлозы. Даже деньги давно перестали делать из благородных металлов, заменив их целлюлозой. В этом разделе будет кратко рассмотрено, что представляют собой углеводы и как они используются. [c.308]

    Многие вещества входят в живые организмы в форме макромолекул, полимеров с высокой молекулярной массой. Биополимеры можно подразделить на три большие класса белки, углеводы и нуклеиновые кислоты. В пище животных белки, углеводы и молекулы из класса соединений, называемого жирами, служат важнейшими источниками энергии. Кроме того, полимерные углеводы выполняют функции важнейших строительных материалов, придающих форму растительным организмам, а [c.443]

    Аминокислоты пищевых белков потребляются организмом в первую очередь для построения белков, необходимых организму для роста, возобновления тканей и синтеза ферментов и гормонов. Избыток аминокислот, введенный с пищей, дезаминируется, причем образующийся аммиак удаляется в виде мочевины или мочевой кислоты, а органический остаток превращается в углеводы или жиры, т.е. в горючее , которое служит источником энергии. (Нормальный животный организм не откладывает запасов белков, подобно тому как он откладывает гликоген или жиры.) [c.387]

    Глицериды — важный компонент пищи многих животных, в том числе и человека. Они служат резервным источником энергии, У растений глицериды встречаются в основном в семенах и плодах, а у животных — в подкожном слое, между мышечными волокнами и в брюшной полости. [c.197]

    Главным источником энергии для большинства животных организмов являются жиры и углеводы. В организме эти вещества сгорают — окисляются кислородом, поступающим из воздуха в легкие и переносимым гемоглобином крови. Теплотворная способность (калорийность) пищи оценивается ее тепловым эффектом сгорания (кДж/г или ккал/г). Сравните калорийность углеводов и жиров  [c.135]

    ВЫЙ ВЗГЛЯД не связанных с ним веществ например, изменение в метаболизме глюкозы может существенно повлиять на синтез и разрушение белков. Именно эти свойства лежат в основе поразительной способности живых организмов адаптироваться к изменениям условий окружающей среды и поддерживать постоянство своих параметров. Например, как правило, пища человека состоит в основном из углеводов, но при длительном голодании начинают расходоваться структурные белки нашего тела. Однако, хотя белки могут служить источником энергии в отсутствие углеводов и жиров, жиры и углеводы не могут быть [c.395]

    Эти вещества из печени поступают в кровь и в периферических органах, в том числе и мозговой ткани, могут использоваться как источники энергии. Содержание кетоновых тел в сыворотке крови человека в норме невелико (0,03—0,2 ммоль/л). Увеличение концентрации кетоновых тел в крови — кетоз развивается при высокой скорости окисления жирных кислот, избыточного накопления ацетил-КоА, когда его количество превышает потребности цикла трикарбоновых кислот. Это состояние возникает при голодании, сахарном диабете, приеме пищи, богатой жирами, т. е. при недостатке углеводов (глюкозный голод, когда окисление жирных кислот становится для организма основным источником энергии). Концентрация кетоновых тел в сыворотке крови при патологии может достигать 16—20 ммоль/л. [c.334]


    Таковы основные направления применения процессов глубокого окисления углеводородов в технике, однако в будущем эти реакции найдут и более широкое распространение. Выше говорилось о создании систем жизнеобеспечения на космических кораблях. Для этого необходимо, чтобы все органические вещества, выделяемые человеком, превращались в продукты глубокого окисления (СО2 и Н2О). Эти продукты в дальнейшем путем ряда реакций будут служить основой синтеза искусственной пищи для космонавтов [500]. Тепло, выделяемое при глубоком окислении, может стать источником энергии в различных отраслях техники. [c.305]

    Что это такое, митохондрии Это не бактерии и не вирусы, не одноклеточные, это просто тельца, плавающие в цитоплазме клеток эукариот, т. е. организмов, клетки которых имеют ядра. Просто, да не совсем. Вообще-то митохондрии выполняют очень важную для клетки функцию — Б них идет процесс окислительного фосфорилирования, то есть происходит переработка энергии, образующейся при сгорании пищи, в энергию АТФ. Иными словами, митохондрия—это энергетическая станция клетки. Подобно тому как электричество — универсальный источник энергии у нас в быту, так н АТФ — универсальный источник энергии для клеточных ферментов. [c.72]

    Первичный синтез органических веществ на земной поверхности выполняется зелеными растениями, использующими солнечную энергию. Этот процесс называется фотосинтезом. Исходным материалом для фотосинтеза служит углекислый газ атмосферы. Образованные растениями органические вещества служат источником энергии и для самих растений и для животных, для которых растения являются пищей. При этом происходит разложение органиче.ских веществ, осуществляемое в про- [c.142]

    Если бы заменить нефть, применяемую как топливо, другил1 и источниками энергии, то ее ресурсы в качестве сырья для производства пищи и высокомолекулярных соединений были бы практически неисчерпаемы. Используя для микробиологического синтеза всего 4% мировой добычи нефти, можно обеспечить белковый рацион всего населения земного шара. Однако ныне производятся белки, пригодные лишь в качестве добавок к корму скота. Ведутся поиски путей производственного связывания атмосферного азота с помощью микробиологического синтеза. [c.12]

    В химических системах доступна более стабильная форма хранения свободной энергии, чем в случае волчка, а именно, образование метастабильных химических состояний. Динамические системы в стационарном состоянии, как только их отключат от источника энергии, быстро умирают , как и волчок (за исключением специальных случаев идеальных жидкостей (гелий), или астрономических систем). Химические системы могут продолжать жить за счет сохраняемой свободной энергии, используя, например, пищу как топливо. Поэтому они могут жить в течение более длительных периодов изменений. Мы можем называть такие химические системы, для которых непосредственным источником энергии является Солнце, растениями. Системы, которые используют свободную энергию, сохраняемую в растениях, называются животными . [c.140]

    В прошлом у людей были неограниченные запасы дешевой энергии. До 1850 г. вода, дерево, ветер и животные целиком удовлетворяли медленно растущие энергетические запросы человека. Древесина - основной источник энергии — всегда была в изобилии леса вырубались, чтобы постоянно расширять посевные площади. Энергия горящего де11сва использовалась для отопления, приготовления пищи и освещения. Вода, ветер и энергия животных приводили в движение общественный транспорт, обеспечивали энергией промышленные процессы и машины. Далее вы увадте, насколько сильно положение изменилось сейчас. [c.196]

    Твердые жиры используются в мыловареиии и в прр-изводстве пищевого маргарин .. Жиры — необходимая составная часть пищи они являются источником энергии при усвоении 1 г жира выделяется 160,1 кДж (38,4 ккал). Жиры служат также как теплоизоляционный материал, затрудняющий охлаждение живого организма. [c.243]

    Жиры как источник энергии являются необходимым элементом питания. Расщепление поступающих с пищей жиров происходит в основном в кишечнике под действием фермента липазы. При этом нейтральные жиры расндепляются иа глицерин и жирные кислоты, а фосфатиды— иа глицерин, фосфорную кислоту, жирные кислоты и азотистые соединения (этаноламин, серии и др.). Глицерин, хорошо раствор[1мый в воде, всасывается в кишечнике непосредственно, а нерастворимые в воде жирные кислоты образуют с желчными кислотами, поступающими из желчного пузыря, комплексные соединения—холеиновые кислоты. [c.444]

    Средние потребности человека в пище оцениваются в 10 470—12 560кДж в день, это соответствует мощности 150 Вт, Имея в виду общие потери от источников энергии до готовой продукции, можно ориентировочно считать, что для обеспечения пищей одного человека мощность энергетического источника должна составлять 0,5—1 Вт/ч. Это означает, что, например, ядерный реактор с термической мощностью 2500 МВт может обеспечить пищей примерно миллион человек [567] по следующей схеме. Реактор используется для производства водорода — источника питания водородных бактерий. Полученная биомасса идет на питание домашних животных и птицы. Мясо последних — пища для человека. [c.553]

    Углеводы (сахара). Углеводы — обширный класс органических соединений. Главным образом это — оксиаль-дегиды, оксикетоны и их производные. Углеводы — природные соединения. Они являются основой жизни растений, входят в состав пищи человека, являются основным источником энергии в процессах жизнедеятельности. [c.296]

    Биологическая роль. Ж - одна из осн. групп в-в, входящих, наряду с белками и углеводами, в состав всех растит, и животных клеток. В организме животных различают запасные и плазматич. Ж. Запасные Ж. откладываются в подкожной клетчатке и в сальниках и являются источником энергии. Плазматич. Ж. структурно связаны с белками и углеводами и входят в состав большинства мембран, Ж. обладают высокой энергетич ценностью при полном окислении в живом организме 1 г Ж выделяется 37,7 кДж, что в два раза больше, чем при окислении 1 г белка или углевода. Благодаря низкой теплопроводности Ж играют важную роль в теплорегуляции животных организмов, предохраняя животных, особенно морских, от переохлаждения. Вследствие своей эластичности Ж играют зашитную роль в коже позвоночных и в наружном скелете насекомых. Ж необходимая составная часть пищи. Норма потребления взрослым человеком 80 100 г/сут [c.157]

    Исключительно велико также значение химии углеводов в развитии биологии и особенно биохимии. Углеводы, вслед за белками и пептидами, являются важнейшими составными частями живого организма. Для животного организма углеводы представляют главный источник энергии, его топливо. Пища млекопитающих состоит прежде всего из углеводов, которые далее подвергаются сложным процессам гликолиза, в результате чего выделяется необходимая для организма энергия. Однако этим далеко не исчерпывается роль углеводов в жизнедеятельности животного. Многие вещества, регулирующие ответственные жизненные процессы, являются производными углеводов. Это, как правило, весьма сложные высокомолекулярные соединения, содержащие наряду с углеводами пептидную и липоидную составляющую, природа которых еще в большинстве случаев не определена. Однако уже сегодня можно уверенно назвать несколько важнейших классов углеводосодержащих веществ, значение которых в процессах жизнедеятельности первостепенно. Это специфические полисахариды, определяющие группы крови, специфические полисахариды, регулирующие иммунитет, гликолипиды (например, цереброзиды и ганглиозиды), входящие в состав нервной ткани, наконец, гликопептиды — сложные комплексы белков и углеводов, имеющие исключительное, хотя еще и далеко не полностью выясненное значение в процессах жизнедеятельности. [c.8]

    Углеводы (сахара) Углеводы — обширный класс органических соединений Главным образом это — оксиаль дегиды, оксикетоны и их производные Углеводы — природные соединения Они являются основой жизни растений, входят в состав пищи человека, являются основным источником энергии в процессах жизнедеятельности Термин углеводы связан с общей формулой простейших сахаров С Н2 0 , иначе С (Н20) — соединение углерода с водой [c.296]

    Крахмал содержится в зёрнах, клубнях и корнях растений и представляет собой основное питательное вещество растений и одно из важнейших пищевых веществ для человека и животных. Особенно богаты крахмалом зёрна риса (- 80 %), пшеницы (- 70 %), кукурузы ( 68 %) и клубни картофеля (-- 20 %). Во время прорастания семян крахмал при участии ферментов разлагается и используется как энергетический и строительный материал. В организм человека и животных крахмал попадает с пищей и затем разлагается в желудочно-кишечном тракте при у 1астии ферментов до глюкозы, которая используется как источник энергии и частично превращается в гликоген печени и мышц. [c.98]

    Витамины представляют собой группу разнообразных по строению химических веществ, принимающих участие во многих реакциях клеточного метаболизма. Они не являются структурными компонентами живой материи и не используются в качестве источников энергии. Большинство витаминов не синтезируется в организме человека и животных, но некоторые синтезируются микрофлорой кишечника и тканями в минимальных количествах, поэтому основным источником этих весьма важных для процессов жизнедеятельности веществ является пища. Потребность человека и животньгх в витаминах неодинакова и зависит от таких факторов, как пол, возраст, влияние среды обитания. Некоторые витамины нужны не всем животным, так, например, ь-аскор-биновая кислота необходима для человека, обезьяны, морской свинки. Вместе с тем для многих животных, способных ее синтезировать, аскорбиновая кислота не является витамином. [c.92]

    Углеводы пищи деградируют в желудочно-кишечном тракте до моносахаридов (преимущественно глюкозы), транспортируются кровью в ткани, где окисляются и используются как источники энергии и углерода, необходимые для реакций биосинтеза. В печени и мышцах избыток глюкозы может резервироваться в виде гликогена (см. рис. 27.1 6, 11). В печени глюкоза может также превращаться в триацилглицеролы, которые упаковываются в ЛОНП и транспортируются кровью в адипоциты — клетки жировой ткани (см. рис. 27.1 7, 12). В адипоцитах жирные кислоты, входящие в эту фракцию, используются для синтезалипидов(27.1 14). [c.440]

    Кроме того, метанообразующие бактерии растут медленнее, чем кислотообразующие, и очень специфичны в отношении потребляемой пищи. Например, каждый вид бактерий метаболизирует только несколько соединений, главным образом спирто1в и органических кислот, тогда как углеводы, жиры и белки не могут ими использоваться в качестве источника энергии. [c.341]

    Химические реакции, протекающие в живом организме, называются процессом обмена веществ или метаболизмом (от греческого слова metabole , означающего изменение). Это реакции самых различных видов. Рассмотрим, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал, которые расщепляются в процессе пищеварения на простые сахара и затем проникают через стенки желудочно-кишечного тракта и попадают в ток крови. Затем эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и крахмал (СеНюОб) ., где х — большое число. Гликоген и другие полисахариды являются одним из важных источников энергии животных. [c.490]

    Калорийность пищевых продуктов. Пищевые продукты играют важную роль, поскольку они служат источником энергии, позволяющей производить работу, и источником тепла, поддерживающего необходимую теплоту тела. Пищевые продукты выполняют эту роль благодаря тому, что окисляются в организме кислородом, поступающим из воздуха в легкие и переносимым в ткани гемоглобином крови. Конечные продукты окисления большей части водорода и углерода, содержащихся в пище, представляют собой воду и двуокись углерода. Азот преимущественно иревращается в мочевинуСО(КН2)2, вы д е л я е м ую с м оч о й. [c.519]

    Вернемся теперь к синтезу АТР. Подавляющая часть молекул АТР (около 85 %) в животных бактериальных и растительных клетках синтезируются в мембранных внутриклеточных структурах (мембранное фосфорилирование). В аэробных организмах непосредственными источниками энергии (энергодонорные процессы) являются определенные стадии окисления пищи. В растениях и фотосинтезирующих бактериях первичными источниками явшяются, конечно, кванты света, энергия которых, после возбуждения хлорофилла, превращается в энергию в окислительно-восстановительных цепях электронного транспорта (ЦЭТ) в тилакоидных мембранах хлоропластов. [c.90]


Смотреть страницы где упоминается термин ПИЩА КАК ИСТОЧНИК ЭНЕРГИИ: [c.211]    [c.366]    [c.445]    [c.366]    [c.63]    [c.61]    [c.8]   
Смотреть главы в:

Химия и общество -> ПИЩА КАК ИСТОЧНИК ЭНЕРГИИ




ПОИСК





Смотрите так же термины и статьи:

Источники пищи



© 2025 chem21.info Реклама на сайте