Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этаноламины, абсорбЦия сероводорода

    Образующийся сероводород адсорбируют твердыми поглотителями или жидкими абсорбентами. В качестве твердых поглотителей для очистки от сероводорода применяют активированный уголь, гидроксид железа, оксид цинка. При жидкостной абсорбции используют аммиачную воду, этаноламины, мышьяково-содовый раствор, растворы карбонатов и т. п. В азотной промышленности наиболее часто применяют очистку при помощи оксида цинка (поглотитель ГИАП-10) при 350—400°С и объемной скорости до 2000 ч по уравнению реакции [c.86]


    В качестве поглотительных растворов для удаления сероводорода из газов распространение в промышленности получили мышьяково-содовый и мышьяково-аммиачный растворы, растворы аммиака и углекислых солей, растворы этаноламина для одновременного удаления сероводорода и двуокиси углерода, органические растворители для удаления сероводорода, двуокиси углерода и органической серы в процессе низкотемпературной абсорбции Некоторые из этих процессов описаны в главе IV. Разработаны способы очистки газа от сероводорода водными растворами щелочных солей. [c.232]

    Абсорбцию сероводорода и двуокиси углерода этаноламином целесообразно проводить, когда концентрация этих примесей в газе не превышает 2—2,5 % (мол.). При более высоких концентрациях выгоднее применять более дешевые абсорбенты, такие, как водные растворы карбоната калия или натрия. [c.30]

    Растворимость водорода, азота, оксида углерода, метана и кислорода в растворе этаноламина значительно ниже растворимости диоксида углерода и сероводорода. Этим объясняются ничтожные потери водорода при очистке растворами этаноламина (особенно в случае абсорбции при атмосферном давлении). Однако водород и оксид углерода, попадая в раствор, в дальнейшем загрязняют диоксид углерода. В том случае, если последний применяется в синтезе карбамида, целесообразно предварительно удалять из него горючие примеси. [c.34]

    Первая служит для абсорбции сероводорода, а вторая — для абсорбции сероводорода и диоксида углерода. Для этих процессов также могут быть использованы этаноламины. Поглощение происходит при 20—30°С, а регенерация алкидного раствора — при 105—110°С. При этом выделяются сероводород и диоксид углерода, которые, пройдя систему охлаждения, частично растворяются в воде и направляются на переработку совместно со сточными водами. Нерастворившуюся основную часть газа, содержащую H2S и СО2, направляют на установки получения свободной серы. Один объем алкацидного раствора может абсорбировать до 50 объемов сероводорода. Расход алкацидного раствора на 1000 газа в среднем равен 1,2 м , причем в конечном газе содержание сероводорода составляет 0,001 г/м . [c.222]

    Очистка этаноламинами. В 1931 г. было установлено, что для абсорбции сероводорода и углекислого газа могут применяться водные растворы многих аминов. При этом образуются соединения, разлагающиеся при нагревании с выделением поглощенных газов. [c.160]

    В Советском Союзе для очистки углеводородных газов от сероводорода наибольшее распространение получил процесс очистки моноэтаноламином (МЭА), а за рубежом чаще используют диэтаноламин (ДЭА) и совсем редко из-за малой поглотительной способности, — триэтаноламин (ТЭА). Если принять поглотительную способность по отношению к сероводороду у моноэтаноламина за 100 %, то у диэтанол-амина она составит 40 %, у триэтаноламина — меньше 15%. Правда, с повышением давления растворимость сероводорода быстрее увеличивается в три этаноламина, так что поглотительные способности при повышении давления абсорбции начинают выравниваться. [c.91]


    Извлечение СОг и H2S из газов производится путем абсорбции их щелочным раствором. При этом растворенный газ вступает в реакцию с абсорбентом, образуя химическое соединение. Для абсорбции двуокиси углерода и сероводорода используются также органические основания, такие как moho-, ди- и триэтаноламин. Давление СО2 над ее раствором в этаноламинах при температуре О—75° С дано в табл. VI-34, Округленные данные по растворимости СО2, НгЗ и их смеси в водных растворах моноэтаноламина приведены в табл. VI-35—VI-37. [c.391]

    Абсорбцию НаВ водными растворами, моно-и диэтаноламина изучали [29], пользуясь той же аппаратурой, что и при абсорбции СО2 [28] (см. стр. 37). Они установили, что при одинаковых условиях коэффициент абсорбции для Н28 был в 3—5 раз больше, чем для СОа- Процесс абсорбции И 28 в целом сходен с абсорбцией СО 2 в том отношении, что повышение степени регенерации раствора этаноламина, увеличение содержания кислых газов или уменьшение расхода абсорбента приводят к уменьшению коэффициента абсорбции. Единственное различие заключалось в противоположном влиянии температуры при абсорбции обоих газов. Даже в области низких температур ее повышение вызывает уменьшение коэффициента абсорбции Нзб. Было также показано,что из-за более высокого коэффициента абсорбции достигается некоторая избирательность любого из изучавшихся растворов аминов по отношению к сероводороду. Для газа, содержащего С02 в 2,5—20 раз больше, чем НдЗ, коэффициент абсорбции последнего в 6—10 раз выше, чем коэффициент абсорбции СО2. В табл. 2.4 приводятся типичные значения коэффициентов абсорбции Н.,3 [29], полученные при температуре около 25° С и расходе абсорбента 1900 кг/ч-л . [c.41]

    С Юсоб очистки газа от сероводорода и диоксида углерода выбирают в зависимости от содержания этих примесей. При значи-телы ом их количестве чаще всего ведут абсорбцию этаноламина-ми с последующей полной нейтрализацией газов кислотного характера щелочью в скрубберах при небольшой концентрации НзЗ и ССо достаточно промывать газы водным раствором щелочи. Очистка водным раствором этаноламинов основана иа том, что эти органические основания дают с сероводородом и диоксидом углерода довольно стабильные при низкой температуре соли, которые ири нагревании диссоциируют  [c.47]

    В технологических операциях улавливания летучих продуктов коксования сочетаются процессы тепло- и массопередачи при непосредственном соприкосновении газа и жидкости и при соприкосновении через стенку. Переход различных компонентов коксового газа в жидкую фазу осуществляется путем конденсации и абсорбции — физической (абсорбция углеводородов) и хемосорбции (аммиака). Используется метод избирательного растворения компонентов газа в различных растворителях аммиак совместно с углекислотой в воде, аммиак — в серной кислоте с образованием (N1 4)2804, легкие углеводороды в минеральных маслах, сероводород — в этаноламине и пр. [c.437]

    Газовые смеси разделяют разными методами конденсацией, ректификацией, абсорбцией и адсорбцией, растворением. Так, из коксового газа газообразный водород выделяют при сжижении всех остальных компонентов, а сероводород растворяют в растворе этаноламина с последующим нагреванием раствора и выделением НгЗ в газовую фазу. [c.21]

    В тех случаях, когда примеси двуокиси углерода или сероводорода составляют значительную часть суммарного газового потока, расходы на очистку могут оказаться чрезмерно высокими по сравнению со стоимостью очищенного газа. Как указывалось в главе пятой (см. табл. 5. 8), для очистки газа, содержащего 31,3% двуокиси углерода, обычный процесс абсорбции моноэтаноламином при давлении 24,5 ати неэкономичен. В таких случаях значительно более рационально применять двухступенчатый процесс с использованием водной или поташной очистки на первой ступени и моноэтаноламина— на второй. Основным фактором, ухудшающим экономические показатели очистки растворами этаноламина при высоком содержании кислых компонентов в газе, является чрезмерно высокий расход тепла на отпарку поглотительного раствора в связи с необходимостью разложить химическое соединение, образовавшееся при абсорбции. Хотя абсорбция карбонатом калия иногда более экономична, этот процесс также требует большого расхода тепла, а простая водная абсорбция требует значительно большей мощности для привода насосов вследствие необходимости весьма интенсивной циркуляции поглотителя. [c.390]

    Процессы поглощения сероводорода и СО2 растворами этаноламинов обратимы при темшературе 24—40°С приведенные выше реакции идут слева направо (что используется для удаления из коксового газа НгЗ и СО2), а при повышении температуры до 105 °С и более реакции идут справа налево, так как в этих условиях амины теряют щелочные свойства. Образовавшиеся сульфиды и карбонаты этаноламинов диссоциируют с выделением поглощенных НгЗ и СО2 из насыщенного )аствора. Установлено, что при совместном поглощении и СО2 раствором моноэтаноламина скорость абсорбции сероводорода в 2—2,5 раза больше скорости абсорбции двуокиси углерода. [c.16]


    Кинетика процесса. Скорость абсорбции сероводорода и двуокиси углерода растворами этаноламинов изучалась многими исследователями [360, 361, 514, 515]. [c.348]

    Очистка газа пиролиза от H2S, СО2 и органических сернистых соединений. Газы пиролиза очищают от сероводорода абсорбцией водным раствором этаноламина, прэтекающей с образованием солей  [c.171]

    Принципиальная схема очистки газа этаноламином приведена иа рис. 1.9. Газ поступает в нижнюю часть абсорбера /, Раствор этаполамина подается вверх и стекает вниз, протнвотч >ком к raj . Температура абсорбции 25- 40"Г Очтнечный газ уходит сверху. Раствор этаноламина, насыщенный сероводородом, уходит с низа абсорбера, нагревается до 110°С в теплообменнике 3 за счет тепла регенерированного раствора, выходящего из десорбера 4, проходит конденсатор 5 и поступает в верхнюю часть десорбера. Давление в десорбере 0,25 МПа, температура низа примерно 130°С (поддерл ивается при помощи выносного кипятильника 8). С верха десорбера смесь паров воды, сероводорода и диоксида углерода, имеющая температуру 120— 125 °С, уходит в аппарат 5, где конденсируются пары воды, затем охлаждается в холодильнике 6 и поступает в сепаратор 7, где газы отделяются от конденсата. Конденсат насосом подают в десорбер, а отходящий газ, состоящий в основном из сероводорода, направляют на производство серной кислоты или серы. [c.53]

    Хотя сероводород значительно лучше растворяется в воде, чем двуокись углерода, водная абсорбция для извлечения сероводорода из газовых, потоков не нашла широкого промышленного применения. Вероятно, это объясняется главным образом тем, что парциальное давление сероводорода в газе обычно недостаточно велико для эффективного осуществления процесса водной абсорбции. Использованию этого процесса препятствуют также жесткие требования к степени очистки газа от сероводорода и невозможность применения воздуха для десорбции раствора (из-за протекания побочных реакций). Как указывалось выше, одним из основных преимуществ процесса водной очистки газа от СОг является значительно меньший расход тепла, чем при процессах очистки этаноламинами или солями щелочных металлов. Расход тепла при этаноламиновой очистке газа от НгЗ меньше, чем при очистке от СО2 вследствие меньшей теплоты реакции. Более того, при достаточно высоком содержании сероводорода в газе, когда увеличение тепловой нагрузки ухудшает экономику процесса, обычно оказывается более целесообразным (а иногда и необходимым) перерабатывать сероводород на элементарную серу. В ходе этого процесса получается достаточное количество отходящего тепла, обеспечивающее нормальную работу этаноламиновой установки. [c.126]

    При абсорбции сероводорода и двуокиси углерода растворами этаноламинов образуются соответственно сульфиды, бисульфиды и карбонаты, бикарбонаты. Эти соединения при температуре выше 100 °С диссоциируют с выделением из растворов HgS и СО2- [c.187]

    При абсорбции сероводорода и двуокиси углерода растворами этаноламинов образуются соответственно сульфиды, бисульфиды и карбонаты, бикарбонаты. Эти соединения при температуре выше 100 °С диссоциируют с выделением из растворов H2S и СОз- Поэтому в процессе этаноламиновой очистки газов применяется десорбция или отпарка абсорбированных газов из поглотительного раствора, который циркулирует между абсорбером и десорбером (регенератором). Наиболее сильным основанием среди этаноламинов является моноэтаноламин, который нашел широкое применение в промышленности для очистки газов. [c.196]

    Примером сочетания абсорбции, дистилляции и мембранного разделения для очистки углеводородных газов от СО2 и НзЗ является метод, разработанный компанией Флюор [44]. По этому методу (рис. 16) исходный газ предварительно селективно очищают от сероводорода (примерно до 0,5 % по объему НзЗ) на двух последовательных ступенях абсорбции растворами этаноламина. [c.76]

    Скорость абсорбции сероводорода растворами этаноламинов определяли в на-сэдочном аппарате диаметром 25 мм. Установлено, что коэффициент массопередачи к а возрастает с повышением концентрации амина и плотности орошения и уменьшается с увеличением содержания HjS в растворе, парциального давления сероводорода в газе и температуры. Изучена также скорость абсорбции смеси СОа и HaS растворами МЭА и ДЭА. Найдено, что коэффициент массопередачи для обоих компонентов определяется главным образом степенью превращения амина. [c.112]

    При очистке газа от сероводорода чаще всего используется процесс абсорбции. Абсорбентами для избирательного извлечения сероводорода из газов служат растворы трикалийфосфата, фенолята натрия, этаноламинов. [c.286]

    Лейбуш А. Г., Шнеерсон А. Л., Абсорбция сероводорода и смесей его с углекислотой этаноламинами, Журн. прикл. химии, 23, № 2, 145 Ш 11, 1176 (1950). [c.335]

    Циркулирующий газ очищают на блоке абсорбции — десорбции. Наибольшее промышленное распространение в качестве абсорбента получили этаноламины. В качестве абсорбента обычно применяется 10—15%-ный водный раствор моноэтаноламина (NH2—С2Н4—ОН). В качестве абсорбента для сероводорода можно применять и другие вещества (диэтано л амин, алкациды, феноляты, фосфаты и др.). [c.109]

    Этаноламиновый способ очистки газа от сероводорода получил в настоящее время широкое применение. Для абсорбции НаЗ из газа применяют водные растворы следующих этаноламинов  [c.307]

    Водные растворы двуокиси углерода и сероводорода являются слабыми кислотами. По своим химическим и физико-термодинамическим свойствам температурам кипения и плавления, растворимости — Нг8 и СОз достаточно близки друг к другу, поэтому удаление их проводят, как правило, совместно абсорбцией этаноламинами, щелочами, алкацидами. [c.134]

    Для удаления сероводорода из сырья, направляемого на полимеризацию, применяют абсорбцию растворами этаноламинов или едкого натра. При высоком содержании меркаптанов, когда образующийся полимер-бензин дает положительную докторскую пробу, их удаляют щелочной промывкой сырья в скруббере раствором едкого натра с регенерацией последнего. При полимеризации сырья из газов каталитического крекинга удаление меркаптанов обычно не требуется но при работе на сырье, получаемом из газов термического крекинга сернистых нефтей, щелочная промывка необходима. [c.245]

    Абсорбентами для избирательного извлечения сероводорода из газов служат растворы трикалийфосфата, фенолята натрия, этаноламинов. Наиболее распространена на нефтеперерабатывающих и химических заводах очистка при помощи растворов моно-и диэтаноламинов (МЭА и ДЭА). В процессе абсорбции-десорбции происходят следующие обратимые реакции  [c.309]

    При 25—35 °С сероводород реагирует с этаноламинами, образуя кислую соль сероводорода и замещенного аммонпевого основания. При 100 °С и выше реакция почти нацело протекает в обратном направленни сероводород выделяется, а этаноламин возвращается в цикл. Поглотительная способность этаноламинов возрастает при снижении температуры абсорбции и повышении давления или кратности циркуляции раствора. [c.261]

    Коэффициент абсорбции А абс. двуокиси углерода и сероводорода водными растворами этаноламинов зависит от ряда гидродинамических, физико-химических и других факторов. Так, в результате опытов иа лабораторной насадочной колонке диаметром 25 мм было показано [c.245]

    Процессы абсорбции этаноламинами, рассмотренные в двух предыдущих главах, можно считать идеальными для очистки природного, нефтезаводского и синтез-газов, содержащих сероводород и двуокись углерода в качестве единственных примесей, подлежащих удалению из газа. Для очистки газов, содержащих сероокись углерода, сероуглерод, цианистый водород, органические кислоты, азотистые основания и прочие примеси, абсорбция этаноламинами имеет ограниченное применение, поскольку этаноламины необратимо реагируют с некоторыми примесями и регенерация загрязненных растворов представляет серьезные трудности. Очистка каменноугольного газа, который содержит такие примеси и во многих странах является важным промышленным и коммунальным топливом, требует применения процессов, не имеющих указанного недостатка. Присутствие в каменноугольных газах аммиака естественно привело к изучению возможности использования его для очистки этого газа от кислых компонентов, а в идеальном случае — для извлечения максимальных количеств как кислых газов, так и самого аммиака. Ниже приводятся концентрации неуглеводородных примесей (в % объемн.), обычно присутствующих в каменноугольных газах. [c.67]


Смотреть страницы где упоминается термин Этаноламины, абсорбЦия сероводорода: [c.300]    [c.130]    [c.64]    [c.315]    [c.66]    [c.364]    [c.11]    [c.269]    [c.54]    [c.42]    [c.60]   
Абсорбция газов (1966) -- [ c.60 , c.682 ]




ПОИСК





Смотрите так же термины и статьи:

Сероводород, абсорбция

Этаноламины, абсорбЦия



© 2025 chem21.info Реклама на сайте