Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводородные газы очистка

    Абсорбер для очистки циркуляционного газа и углеводородного газа стабилизации с клапанными тарелками. Число тарелок — 20. [c.57]

    Стабилизационная колонна и абсорбер для очистки циркуля-дионного газа оборудованы тарелками с 8-образными элементами. Насадочные отгонная колонна и абсорбер для очистки углеводородного газа с кольцами Рашига размером 50 X 50 мм. [c.54]


    Основными аппаратами этаноламиновой очистки газов являются абсорбер и десорбер колонного типа с насадкой или тарелками. Технологическая схема типовой установки очистки углеводородных газов от сероводорода и диоксида углерода раствором моноэтаноламина приведена на рис. VI- . Производительность установки по сырью 170 тыс. т/год. [c.57]

    В Советском Союзе для очистки углеводородных газов от сероводорода наибольшее распространение получил процесс очистки моноэтаноламином (МЭА), а за рубежом чаще используют диэтаноламин (ДЭА) и совсем редко из-за малой поглотительной способности,— триэтаноламин (ТЭЛ). Если принять поглотительную способность по отношению к сероводороду у моноэтаноламина за 100 %, то у диэтанол-амина она составит 40 %, у триэтаноламина — меньше 15%. Правда, с повышением давления растворимость сероводорода быстрее увеличивается у три- [c.57]

    Циркуляционный газ после очистки от сероводорода возвращается в цикл на смешение с сырьем избыток водородсодержащего газа выводится с установки. В отпарной колонне из гидрогенизата удаляются сероводород, углеводородные газы и вода. Стабильный гидрогенизат, предварительно охлажденный за счет теплообмена -ь нестабильным гидрогенизатом, направляется в блок риформинга. [c.51]

    Абсорберы очистки углеводородных газов. Очистка осушествляется в абсорберах К-203 и К-204 10-15%-ным раствором МЭА. [c.217]

    Сероводород получается в результате очистки циркуляционного водородсодержащего и углеводородных газов от сероводорода. Содержание углеводородов в сероводороде, уходящем с установки, не превышает 2% (об.). Выход сероводорода зависит от содержания серы в сырье, глубины очистки сырья и газов и колеблется в пределах 0,5—2,5% (масс.) на сырье. [c.44]

    Очистка циркуляционного водородсодержащего газа, а также углеводородсодержащего газа от сероводорода происходит в колоннах (абсорберах) 10— 15%-ным моноэтаноламином. В колонну углеводородный газ поступает снизу из сепараторов. Навстречу ему, противотоком, движется раствор моноэтаноламина. Очищенный газ поступает в каплеотбойник, а затем в компрессор и далее после дросселирования до 0,4 МПа выводится из установки. Десорбция сероводорода из насыщенного им раствора моноэтаноламина происходит в десорбере. После десорбере сероводород вместе с парами воды поступает в холодильник, сепаратор, а затем газ направляется в производство серной кислоты или на факел. - [c.267]

    Установка очистки углеводородных газов от сероводорода раствором этаноламина [c.57]

    Углеводородный газ совместно с углеводородным газом, выделенным после сепаратора второй ступени, поступает на очистку от сероводорода раствором МЭА. Очищенный углеводородный газ служит топливом для реакторной печи. [c.53]


    Насадочные абсорбер для очистки углеводородного газа (рабочее давление 0,7 МПа) и колонна отдува сероводорода из бензина (рабочее давление 0,3 МПа). В качестве насадки применены кольца Рашига размером 25 X 25 мм. [c.57]

    Циркуляционный газ подвергается очистке от сероводорода и возвращается в цикл. Для поддержания нужной концентрации водорода в циркуляционном газе перед сепаратором на компрессор постоянно подается свежий водородсодержащий газ, а часть циркуляционного газа отдувается. Отдуваемый водородсодержащий газ, предварительно нагретый в подогревателе печп, направляется в стабилизационную колонну с целью снижения парциального давления паров нефтепродукта. В колонне из дизельного топлива выделяются углеводородные газы и бензин для получения дизельного топлива с требуемой температурой вспышки. Тепловой режим колонны обеспечивается теплотой сырья, подаваемого в стабилизационную колонну. Выходящее из нижней части колонны стабильное дизельное топливо охлаждается в теплообменниках и воздушном холодильнике, после чего выводится с установки. С верха колонны отбирается бензин и углеводородный газ после охлаждения они поступают в сепаратор, в котором бензин отстаивается от водного конденсата. [c.64]

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]

    Очистка бензина от сероводорода осуществляется путем его продувки в колонне очищенным углеводородным газом. Водяной конденсат направляется в деаэратор для отдува сероводорода водяным паром. Конденсат, освобожденный от сероводорода, после охлаждения сбрасывается в производственную канализацию, а сероводород — в факельную линию. [c.64]

    Колонны очистки циркуляционного и углеводородного газа стабилизации, а также отгонная колонна с S-образными тарелками. [c.65]

    Насадочные абсорбер для очистки углеводородного газа, поступающего из колонны отдува бензина, и колонна отдува бензина. В качестве насадки используются седла Инталокс. [c.65]

    Тарельчатый абсорбер. Используется для очистки водородсодержащего и углеводородного газов от сероводорода. Тарельчатый абсорбер, по сравнению с насадочным, дает возможность работать с меньшим количеством раствора МЭА и улучшает условия массо-обмена в результате равномерного распределения потоков газовой и жидкой фаз по сечению аппарата. [c.93]

    Нестабильный гидрогенизат из сепаратора высокого давления поступает в сепаратор низкого давления, где из него удаляется част1 растворенных газов. Углеводородный газ из сепаратора низкогс давления направляется на очистку от сероводорода растворол МЭА и затем выводится в топливную сеть завода. [c.56]

    До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки. [c.203]

    Установка рассчитана на переработку нестабильной нефти Ромашкинского месторождения и отбор фракций и. к.—62, 62—140, 140—180, 180—220 (240), 220 (240)—280, 280—350, 350—500°С (остаток — гудрон). Исходное сырье, поступающее на установку, содержит до 5000 мг/л солей и до 2 вес. % воды. Содержание низкокипящих углеводородных газов в нефти достигает 2,5 вес. % на нефть. На установке принята двухступенчатая схема электрообессоливания, позволяющая снизить содержание солей до 30 мг/л и воды до 0,2 вес. %. Технологическая схема установки предусматривает двухкратное испарение нефти. Головные фракции из первой ректификационной колонны и основной ректификационной колонны вследствие близкого фракционного состава получаемых из них продуктов объединяются и совместно направляются на стабилизацию. Бензиновая фракция н. к.— 180 °С после стабилизации направляется на вторичную перегонку с целью выделения фракций н. к. — 62, 62—140 и 140—180 °С. Блок защелачивания предназначается для щелочной очистки фракций н. к.—62 (компонент автобензина) и 140—220 °С (компонент топлива ТС-1). Фракция 140— 220 °С промывается водой, а затем осушается в электроразделителях. [c.114]

    Сероводород является одной из самых нежелательных примесей в газе поскольку он ядовит и способен оказывать корродирующее действие на металлы. Кроме того, загрязнение газа сероводородом приводит к дезактивации и отравлению катализаторов, применяемых во многих процессах производства и использования водорода, как, например, при конверсии СО, конверсии углеводородов, синтезе аммиака, синтезе метанола, гидрогенизации пищевых жиров и т. д. Поэтому очистка газа от сероводорода предусматривается в большинстве схем получения водорода. Так, при производстве водорода или сицтез-газа методом газификации твердых или-жидких топлив (содержащих обычно в своем составе серу) очистке от НгЗ подлежит водяной газ, поскольку для дальнейшего получения из него водорода водяной газ должен быть направлен на каталитический процесс конверсии окиси углерода. При получении водорода из углеводородных газов — очистке от серы подвергается первичное газообразное сырье. При железо-паровом способе сероводород удаляется из целевого газа — технического водорода. Практически, из промышленных способов получения водорода только процесс электролиза воды не связан с очисткой газа от сероводорода. [c.316]


    В качестве жидкого топлива применяют мазуты прямой перегонки (основа котельного топлива), крекинг-остатки, гудроны, различные смолистые вещества — остатки от очистки масляных дистиллятов, ловушечные нефтепродукты и др. К числу газообразных топлив относятся естественные или природные газы, нефтяные (попутные) газы, промышленные сухие газы, получаемые в процессах нефтепереработки. Нефтяные остатки и углеводородные газы обладают высокой теплотой сгорания — порядка 1000— 11 500 ккал/кг (или ккал/м ) при нормальных условиях. Для атмосферной перегонки нефти с целью получения бензина, керосина и [c.200]

    В настоящее время очистку растворами щелочи применяют для удаления сероводорода, диоксида углерода, низших меркаптанов, нефтяных кислот, кислых продуктов после сернокислотной очистки и других нежелательных примесей из нефтепродуктов. Щелочной очистке подвергают углеводородные газы, бензиновые, керосиновые, реже дизельные и масляные дистилляты. [c.114]

    Линии I - сырье - деасфальтированный гудрон II - добавочный водород П1 — вода IV - углеводородные газы V - сероводород VI - аммиак VII — вода на очистку уш- фракция н. к. - 180°С IX - фракция 180-350°С X - остаток выше 35О С XI — растворитель на блок деасфальтизации. [c.175]

    Очистка углеводородных газов [c.114]

    Щелочная очистка углеводородных газов предназначена для извлечения меркаптанов и частично диоксида углерода. В условиях равновесия диоксид углерода вытесняет меркаптаны из раствора. Однако при концентрации СО2 более 0,1 % (об.) скорость [c.114]

    Побочными продуктами процесса гпдроочистки бензина является углеводородный газ, избыточный водородсо держащий газ и сероводород (прп наличии очистки газа). Выход газа составляет примерно 1% (масс.) на сырье. Характеристика углеводородного газа приведена в табл. 7. [c.28]

    Сероводородная вода периодически сбрасывается в сепаратор насыщенного раствора МЭА, а углеводородный газ, содержащий сероводород, направляется на очистку 15% раствором МЭА. Насыщенный сероводородом раствор МЭА пз абсорберов очистки подвергается дегазации, нагревается в теплооблгеннике и поступает в отгонную колонну. [c.52]

    История развития физических методов переработки углеводородных газов началась с использования нефтяного газа. В 20-х годах текущего столетия в США в связи с бурным ростом нефтяной промышленности возникла задача утилизации больших объемов нефтяного (попутного) газа. Первым шагом на пути широкого использования нефтяного газа было комприми-рование. При компримировании получали так называемый газовый бензин, состоящий в основном из пентанов с н( .большими примесями бутанов и вышекипящих. Газовый бензин применялся в качестве компонента автомобильных бензинов и пользовался широким спросом на рынке. С этого nepnoi.a на промыслах стали внедрять закрытые системы сбора и хранения нефти и начали строительство газобензиновых заводов. Назначение газобензиновых заводов состояло в подготовке газа к транспортированию (очистка от механических примес( й и воды, сжатие газа) и получении газового бензина. Период с 20-х по 40-е годы назван эрой газового бензина . [c.5]

    Стабильный продукт из колонны направляется на охлаждение в теплообменниках и воздушном холодильнике, фильтрование от механических примесей, после чего выводится с установки. Из верхнее части стабилизационной колонны пары бензина и углеводородныв газ поступают на охлаждение в воздушный конденсатор-холодильник, а затем в сепаратор. После сепаратора бензин содержит значительное количество растворенного сероводорода, который отдувают очищенным углеводородным газом. Насыщенный сероводородом газ направляется после дросселирования на очистку совместно с газами из стабилизационной колонны. Очрщенный углеводородный газ. направляется к печам установки, избыток газа сбрасывается в факельную линию. [c.56]

    На некоторых предприятиях требуется улучшить технические средства осуществления процессов димеризации ацетилена на медьсодержащем катализаторе сушки ацетилена твердым каустиком ксантогенирования целлюлозы очистки воздуха от ацетилена и других углеводородов в воздухоразделительных установках грануляции расплава транспорта карбида кальция компримирова-ния и транспортирования по трубопроводам, факельным и вентиляционным системам взрывоопасных газов хранения взрывоопасных газов в газгольдерах и сжиженных углеводородных газов в сборниках , глубокого охлаждения и конденсации газовых смесей, сопровождаемых образованием в жидкой или газообразной фазе [c.8]

    На ряде заводов внедрен узел отдува сероводорода из бензина )чищенным углеводородным газом. Углеводородный газ подверга-зтся раздельной очистке от сероводорода раствором МЭА газ из се-заратора низкого давления очищается в абсорбере под давлением 3,4—0,5 МПа газ из бензинового сепаратора очищается от сероводорода при 0,13 МПа, затем используется как топливо для печей. [c.59]

    Очистка отгона [бензина] от сероводорода. Отгон (бензин), получаемый в процессе гпдроочистки, в зависимости от характеристики исходного сырья может содержать до 1,5% Н. 8. Для его удаления применяют два способа 1) на установках старого типа предусмотрена схема защелачивания бензина с последующей водной промывкой и отстоем (см. рис. 9, И, 12) 2) за последние годы принята схема отдува бензина углеводородным газом (см. рис. 10,13). [c.74]

    Технологическая схема предусматривает очистку циркуляционного водородсодержащего газа и углеводородных газов. Для удале-нпя сероводорода принят метод очистки 13% раствором МЭА. Преимущества данного метода 1) высокэ[Я поглотительная способность абсорбента, позволяющая прп сравнительно нйзкйх з трТта1 на-очистку достигать требуемой глубины очистки газов 2) сравнительно низкая стоимость абсорбента 3) легкая регенерация загрязненных растворов. [c.75]

    В результате побочных реакций моноэтаноламина с диоксидом углерода и присутствующими в углеводородном газе кислородом, сероуглеродом, тиоокси-дом углерода и другими соединениями образуется сложная смесь, имеющая высокие температуры кипения. С сероводородом, например, в присутствии кислорода образуется тиосульфат, не регенерируемый в условиях очистки моноэтаноламином. Количество образующихся побочных продуктов примерно 0,5 % (масс.) на циркулирующий раствор МЭА. Во избежание накопления в системе нерегенерируе-мых продуктов часть раствора МЭА с низа десорбера 14 насосом 12 направляется на разгонку в колонну 18 (часто вместо колонны ставят периодически действующий перегонный куб), куда подается раствор щелочи. Выделившиеся при разгонке водяные [c.58]

    Очищенный углеводородный газ, выходящий с верха абсорбционной колонны 9, проходит газосепаратор 13, затем выводится с установки. Насыщенный раствор МЭА с низа колонны 9 нагревается в теплообменниках 11 я проходит регенерацию в десорбере 14. Регенерированный раствор МЭА с низа десорбера 14 забирается насосом 12, прокачивается через теплообменники И и холодильник 10 и возвращается на абсорбцию в колонну 9. Низ десорбера 14 подогревается за счет тепла кипятильника 17. Выходящие с верха десорбера 14 сероводород и диоксид углерода направляются в десорбер 6. Вместе с десорбированными Н.,5 и СО, после I ступени очистки газы проходят водяной холодильник 15, где конденсируются водяные пары, и попадают в газоводоотделитель 16. С верха газосепаратора выводятся кислые газы (сероводород, диоксид углерода и примеси), [c.58]

    В блоке гидроочистки сырье (фракция н. к. - 180°С) сырьевым насосом 1 направляется на смешение с циркуллцконным газом гидроочистки и далее через теплообменник 2 и печь 3 в реактор 4, где сернистые соединения, содержащиеся в сырье, гидрируются на катализаторе ГК-35, превращаясь в сероводород. Из реактора газопродуктовая смесь через теплообменник 2, воздушный и водяной холодильники 5 и 6 поступает в сепаратор 7, где водородсодержащий газ отделяется от нестабильного гидрогенизата и поступает на очистку от сероводорода раствором моноэтаноламина в адсорбер и затем возвращается на прием циркугшщониого компрессора 9. Нестабильный гидрогенизат из сепаратора поступает в стабилизащ -онную колонну 10, где из него отпариваются легкий бензин, углеводородные газы, сероводород и вода, и далее в ректификационную колонну для вьщеления фракции н. к. - 70 °С (верхний продукт) и фракции 70-180 °С (нижний продукт). [c.154]


Смотреть страницы где упоминается термин Углеводородные газы очистка: [c.490]    [c.296]    [c.492]    [c.51]    [c.66]    [c.74]    [c.94]    [c.95]    [c.218]    [c.219]    [c.240]    [c.37]   
Технология переработки нефти и газа (1966) -- [ c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Очистка углеводородным газом

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте