Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение кобальта от железа на анионите

    Способность акридина образовывать кристаллические соединения при взаимодействии с комплексными (например, роданистыми) анионами металлов (например, цинка, меди, кобальта, железа, ртути, кадмия, висмута) используется в микрокристаллоскопии для обнаружения соответствующих ионов металлов, либо их отделения. [c.103]

    Проведенные исследования показывают также, что отделение висмута на анионите ТМ от меди, никеля, хрома, кобальта, железа и многих других элементов проходит количественно без заметных вторичных процессов, имеющих место при отделении его на катионите с применением комплексообразователя — йодистого калия. [c.234]


    Аналогичный принцип разделения металлов на анионите применяется для анализа более сложных смесей, например полиметаллических руд. Из 9 н. соляной кислоты на анионите поглощается не только кобальт, но и медь, железо, цинк и другие катионы, причем достигается отделение от металлов, которые не образуют хлоридных комплексов, как алюминий, никель, марганец, и др. Металлы, поглощенные на анионите, можно вымыть разбавленной соляной кислотой и далее определять обычными методами. [c.76]

    Превратив некоторые простые металлические катионы в комплексные цианиды, можно достичь количественного отделения их от щелочных и щелочноземельных металлов. Этим методом выполняются пределения натрия и калия в присутствии железа и кобальта. Расхождения между экспериментальными и расчетными величинами не превышают 0,3%. Наиболее удобен метод для удаления мешающих анионов, например, сульфатов или фосфатов [54]. [c.305]

    Фосфорная кислота образует довольно прочные комплексы с железом и алюминием и, следовательно, может применяться в качестве комплексообразующего элюента при отделении этих металлов от двузарядных ионов, в частности, от марганца и меди [29]. Высокой устойчивостью отличаются анионные комплексы с пирофосфатом и полиметафосфатом (ср. рис. 5,4) с их помощью некоторые элементы, например, медь, цинк и марганец, могут быть отделены от железа методом селективного поглощения. Железо, образующее прочные анионные комплексы, не поглощается катионитом, который лучше всего использовать в КН4-форме [34 80, 108, 109 ]. В качестве комплексообразователя для меди иногда используется несколько необычный элюент — раствор тиосульфата. А. М. Васильев, В. Ф. Торо-пова и А, А. Бусыгина [134 ] применяли раствор тиосульфата для отделения меди от цинка или кадмия, а Д. И. Рябчиков и В. П. Осипова [109 ] — для отделения меди от алюминия и магния. Коэффициенты распределения [59 ] определяют следующий порядок элюирования медь, кадмий, свинец, цинк. Такие элементы, как никель, кобальт, марганец, алюминий, железо, кальций и барий, весьма прочно удерживаются катионитом. [c.364]

    Для отделения малых количеств висмута от мешающих его определению меди, железа, свинца, кобальта и других элементов был применен слабоосновной анионит ТМ. [c.231]

    Избирательная адсорбция катионов и анионов на окиси алюминия при использовании хроматографической техники может явиться средством отделения или обогащения неорганических микрокомпонентов Ч Например, железо(1П) можно открыть при концентрации 10 Ш в Ш растворах кобальта [c.39]


    Кинетическая инертность роданидных комплексов Сг(1П) использована для отделения хрома от железа, кобальта и никеля. Хром практически полностью проходит в фильтрат, а железо, кобальт и никель количественно сорбируются катионитом КУ-2. Найдены оптимальные условия разделения. Метод применен для выделения хрома при анализе стали. Анионные роданидные комплексы Сг(П1) разделены на анионообменной целлюлозе ДЕАЕ и идентифицированы по спектрам люминесценции. [c.366]

    При анализе платиновых металлов очень редко приходится иметь дело с определением только одного какого-либо элемента в чистом растворе. Природные минералы чаще всего наряду с платиной и палладием содержат в большем или меньшем количестве родий, иридий, осмий и рутений, а также железо, кобальт, никель и хром. Применяющиеся в технике изделия из платины, палладия или родия в большинстве случаев содержат некоторое количество иридия и рутения для повышения механической прочности. Определению платиновых металлов могут мешать анионы, которые появляются в растворе после растворения анализируемых материалов. Для отделения благородных металлов от сопутствующих элементов все еще наиболее удобны пробирные методы [404] (стр. 191), в то время как для разделения платиновых металлов почти всегда рекомендуют экстракционные методы, если определение заканчивают фотометрически. [c.356]

    Часто применяются методы адсорбционной, осадочной, ионообменной и бумажной хроматографии. Описан ряд методов отделения кобальта, главным образом от никеля, меди, железа и некоторых других элементов, с использованием в качестве адсорбентов окиси алю.миния, целлюлозы, пермугитов. Большее распространение имеют ионообменные методы разделения на колонках с анионитами. В 9jV растворе соляной кислоты образуются хлоридные анионные комплексы кобальта, меди, цинка и железа, поглощающиеся ионообменной смолой никель и марганец проходят при этом через колонку. При последующей обработке AN соляной кислотой элюируется кобальт, а железо, медь и цинк остаются на анионите. Описаны также катионообменные методы в это.м случае поглощенный катионито.м кобальт элюируют с.месью органических растворителей с соляной кислотой, напри.мер ацетоно.м, метилизопропилкетоном и др. [c.62]

    Разработано [763] разделение кобальта и алюминия катиони-рованием их комплексов с ЭДТА, разделение никеля, марганца, кобальта и железа хроматографированием на анионите АВ-17 солянокислых вытяжек при анализе почв [337], применение окси-целлюлоз для отделения железа от кобальта [124]. Применяются [734, 1375] для элюирования кобальта вместо водных растворов соляной кислоты ацетоно-водные, что позволяет извлекать кобальт из анионита при более низкой концентрации соляной кислоты. Кобальт, железо и молибден разделяют [1068] на анионите посредством вымывания растворами соляной кислоты различной концентрации. [c.82]

    Радиоактивный раствор сначала нейтрализуют аммиаком до рН=2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з таких примесей, как церий, иттрий, рутений, технеций, барий, лантан и кобальт и др. Вместе с примесями на этой стадии процесса с гидроокисью железа соосаждается также около 8—9% цезия и рубидия. Основную массу лантаноидов, щелочно-земельных металлов и ЫааиаО выделяют на следующей стадии технологического процесса в результате обработки радиоактивного раствора 50%-ным водным раствором гидроокиси натрия, содержащим соду. В полученном после отделения осадка фильтрате, предварительно подкисленном серной кислотой до концентрации 0,5 моль1л и нагретом до 90° С, растворяют алюмоаммонийные квасцы до тех пор, пока их концентрация не станет равной приблизительно 240 г/л. Затем раствор охлаждают до 4—25° С, кристаллы квасцов отделяют (извлечение цезия составляет 90%) и два-три раза перекристаллизовывают из водного раствора. Полученные таким образом алюмоцезиевые квасцы, содержащие до 15 вес. 7о алюморубидиевых квасцов, растворяют в воде (100 г/л) и через нагретый до 80° С раствор пропускают насыщенный аммиаком воздух до pH = 4,5—7,0. Фильтрат, содержащий после отделения гидроокиси алюминия сульфаты цезия, рубидия и аммония, пропускают [6— 10 мл/(мин см )] через колонку с анионитом (амберлит ША = 4Ю) в гидроксильной форме для удаления сульфат-иона и других анионных примесей. Элюат упаривают почти досуха, обрабатывают соляной кислотой и снова упаривают досуха. [c.322]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]


    В настоящее время перед определением кобальта нит-розонафтолами часто отделение мешающих элементов проводят с помощью анионного обмена кобальт вместе с медью, цинком, л<елезом, свинцом сорбируют на анионите (АВ-17) пз 8—9 М раствора соляной кислоты. При этом происходит отделение никеля. Затем десорбируют кобальт 4 М раствором соляной кислоты. Вместе с кобальтом извлекается 20—257о железа, которое при последую-щел определении маскируют фосфат-иоиом. [c.70]

    Последнюю можно рассматривать как пятиосновную кислоту, диссоциирующую ступенчато с образованием анионов, окрашенных в различный цвет. При pH ниже 9 индикатор окрашен в красно-фиолетовый цвет, при pH от 9 до 11—в фиолетовый цвет и при pH выше 11 — в синий цвет. Комплексное соединение кобальта с мурексидом окрашено в желтый цвет. Мурексид можно применять для прямого титрования кобальта раствором комплексона П1 при pH около 9—10, которое создают раствором гидроокиси аммония. Слишком большой избыток аммиака разрушает мурексидный комплекс кобальта кроме того, в этом случае кобальт окисляется до трехвалентного кислородом воздуха. В точке эквивалентности окраска переходит из желтой (цвет комплекса кобальта с мурексидом) в фиолетовую (цвет свободного красителя). Кобальт титруют раствором комплексона 1П в присутствии мурексида после отделения тиоаце-тамидом [717] (железо можно замаскировать тайроном) или ар-саниловой кислотой [1114]. Не мешают щелочноземельные металлы, однако все тяжелые металлы должны быть отделены. Кобальт можно также титровать раствором НТА [928]. [c.120]

    Комплексонометрическое титрование кобальта в ферритах [1452]. Кобальт отделяют на анионите. Аналогично разделяют также никель, кобальт и цинк. I г пробы растворяют ъ 9 N растворе соляной кислоты и окисляют двухвалентное железо перегидролем. Полученный раствор вводят в колонку диаметром 1 мл и длиной 50 см, заполненную 28 г анионита. Далее вымывают из колонки никель, пропуская через нее 80 мл 9 N раствора соляной кислоты. После отделения никеля пропускают через колонку 75 мл 4 N раствора соляной кислоты, что приводит к полному удалению из колонки кобальта. Содержащую кобальт фракцию раствора упаривают до объема 5—10 мл, прибавляют избыток раствора комплексона III, 10 мл ацетатной буферной смеси с pH 4,8 и оттитровывают непрореагировавший комплексон III стандартным раствором сульфата меди в присутствии 1- (2-пиридилазо) -2-нафтола. [c.195]

    Из приведенного ряда следует, что В1 относится к металлам, наиболее эффективно экстрагируемым алифатическими монокарбоновыми кислотами, и при его извлечении из технологических растворов возможна очистка от таких основных примесей, как железо, свинец, медь, серебро, кадмий, цинк, никель (рис. 3.13). В [85] показано, что алифатическими монокарбоновыми кислотами В] экстрагируется в виде мыла В1Кз, и при этом возможно его отделение от кобальта и никеля. Показано [100], что висмут экстрагируется расплавом стеариновой кислоты из перхлоратных, сульфатных и хлоридных растворов в виде В1Кз, где Я — анион монокарбоновой кислоты. Холь-киным с соавторами [101] показана перспективность использования процесса экстракции металлов монокарбоновыми кислотами для синтеза висмутсодержащих сверхпроводящих материалов состава В12Са8г2СиО с. [c.69]

    Отделение металлов, образующих кислородные анионы, от других металлов выполняется весьма просто. Для этой цели могут применяться как катиониты, так и аниониты — например в С1-форме. Здесь используется тот же принцип, что и при отделении мешающих ионов противоположного знака. Примером применения анионообменных методов может служить отделение хромат-ионов от алюминия [30], железа [ИЗ], кобальта [39] и титана [98]. Аналогичные методы применяли Т. А. Белявская и Е. П. Шкробот [14] для отделения хрома (VI) от хрома (III) (см. также [119]), а Ю. В. Морачевский и М. Н. Гордеева [78] — для отделения молибдена от кальция, алюминия и железа. Известен метод определения ванадия, хрома и молибдена в сталях [36], основанный на том, что железо не поглощается анионитами из ацетатного буферного раствора (pH 2,5—3,0), к которому, во избежание осаждения железа, добавлен маннитол. Ванадий элюируют 0,6М NaOH, хром — ЪМ НС1 и, наконец, молибден — iM H l. [c.353]

    O l", ВгО з, JO s) не дают с трехвалентным железом аналогичного окрашивания [349, 394, 644, 645, 675, 1095, 1126]. Однако, если открытие [Fe( N)e] " приходится производить в присутствии большого количества анионов этой подгруппы, обычно прибегают к предварительному отделению ферроциапида в виде какой-либо его малорастворимой соли. В зависимости от анионного состава смесей такое отделение может производиться осаждением в виде солей свинца [646], титана [808], цинка [516, 1127], тория [781, 1006], церия [622], кадмия [843, 1096], кобальта [706], молибдена [623], серебра [419] или же осаждением в виде смешанного ферроцианида (NH4)2 a[Fe( N)e] [1391]. После отделения этих осадков ферроцианид в них идентифицируется либо по синей окраске берлинской лазури, либо по красно-коричневому окрашиванию, которое дают ионы [Fe( N)e] с или UOf. [c.20]

    Метод отделения, приводимый ниже, основан на удалении железа и других мешающих элементов при помощи анионного обмена. Хлоридные комплексы железа, меди, кобальта, кадмия и цинка могут задерживаться на колонке с сильноосновной анионообменной смолой, что позволяет отделить их от никеля, алюминия, титана, кальция, магния и щелочных металлов, которые на смоле не задерживаются. Описываемый метод аналогичен предложенным Либерманом [14] для никеля в медных рудах и Эстоном и Лаверингом [15] для никеля в хондритовых метеоритах. [c.324]

    Алифатические и ароматические амины с длинной цепочкой, находясь в органических растворителях, экстрагируют кислоты из водного раствора. Этим свойством аминов можно воспользоваться для отделения металлов в виде комплексных анионов, например хлоридных анионов. Исследована экстрагируемость большинства элементов первой переходной группы из раствора соляной кислоты раствором метилдиоктиламнна в трихлор-этилене Таким способом можно отделить цинк от кобальта. Алкилсуль-фаты и сульфонаты с длинной цепочкой связываются с комплексными анионами (такими, как о-фенантролин двухвалентного железа), образуя соединения, экстрагируемые хлороформом они могут оказаться полезными при разделениях. [c.61]


Смотреть страницы где упоминается термин Отделение кобальта от железа на анионите: [c.449]    [c.418]    [c.177]    [c.447]    [c.209]    [c.724]    [c.196]    [c.49]    [c.424]   
Курс аналитической химии (2004) -- [ c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Железо отделение

Железо отделение от кобальта

Кобальт отделение

Отделение ионов кобальта от железа на анионит

Отделение кобальта(П) от железа(Ш) с помощью анионита



© 2025 chem21.info Реклама на сайте