Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лантаноиды атомные радиусы

Рис. 12. Изменения атомных радиусов ( (сплошная линия) и ионизационных потенциалов (пунктир) лантаноидов с ростом порядковых номеров Рис. 12. <a href="/info/500734">Изменения атомных</a> радиусов ( (сплошная линия) и ионизационных потенциалов (пунктир) лантаноидов с ростом порядковых номеров

    Скандий по значению атомного радиуса и энтальпии образования оксида ближе стоит к А1, чем к своим более тяжелым эле -тронным аналогам. Гидроксид скандия — слабое основание с a -фотерными свойствами соли 5с подвергаются заметному гидролизу. Между солями скандия и лантаноидами не всегда наблюдается изоморфизм. Скандий в большей степени, чем его электронные аналоги, склонен давать комплексные соединения. [c.506]

    Причиной большей металличности актиноидов является то, что их атомные радиусы больше, чем у лантаноидов. Поэтому 5/-электроны у актиноидов более удалены от ядра и более подвижны, чем 4/-электроны у лантаноидов. [c.62]

    Элемент 63 не во всем подобен другим редкоземельным элементам. Европий — самый легкий из лантаноидов, его плотность всего 5,245 г/ м У европия же наибольшие из всех лантаноидов атомный радиус и атомный объем. С этими аномалиями свойств элемента № 63 некоторые исследователи связывают и тот факт, что из всех редкоземельных элементов европий — наименее устойчивый к корродирующему действию влажного воздуха и воды. [c.142]

    Различие между простыми и переходными металлами проявляется уже при сравнении атомных радиусов. /-Элементы характеризуются меньшими значениями радиусов, чем р-металлы. Кроме того, различие атомных радиусов у зр-элементов-аналогов значительно больше, чем у элементов вставных декад. Так, у металлов [А-группы радиусы изменяются от 0,250 для ЯЬ до 0,155 нм у а атомные радиусы всех -элементов — в интервале 0,124 — 0,181 нм. Еще более близки атомные радиусы у /-металлов, что объясняется заполнением третьего снаружи энергетического уровня. Так, все элементы семейства лантаноидов имеют атомные радиусы в пределах 0,174 — 0,183 нм. [c.210]

    Уменьшение атомных радиусов вдоль больших периодов и их слабый рост с возрастанием порядкового номера -элементов в пределах одной и той же группы получили название эффектов -сжатия, а в группе лантаноидов — /-сжатия. Эффект /-сжатия обусловлен уменьшением атомных радиусов лантаноидов (с № 57 [c.490]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5( 0-оболочку неустойчивой. Для элементов, следующих за Сс1, вновь наблюдается Монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бб -электронов, а один из семи неспаренных электронов на 4/оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ей и УЬ, 4/- и 4/З-оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бя -электронов при квазистабильных 4/- и 4/3-оболочках. Для элементов начала внутренних периодов — Ьа и Сс1 — наблюдается только степень окисления +3 вследствие устойчивости 4/>- и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5<Лб 2-электроны, т.е. по три электрона. Следует отметить, что заполненные бв-орбитали также должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]


    Второе исключение из общей закономерности увеличения атомных радиусов в группах наблюдается у элементов, следующих за лантаноидами. Уменьшение радиусов атомов лантаноидов с увеличением атомной массы носит название лантаноидного сжатия. Причина его та же самая — с увеличением заряда ядра растет притяжение электронов. Число же,электронных слоев в пре-делах одного и того же периода не увеличивается. В результате лантаноидного сжатия атомный радиус гафния, (0,157 нм) оказывается равным радиусу циркония (0,157 нм), что, как следствие, приводит к очень большому сходству в химических свойствах циркония и гафния, а также ниобия и тантала. Кроме лантанс>идного [c.74]

    Практически совпадают значения атомных радиусов для молибдена и вольфрама, хотя эти элементы являются представителями разных периодов Системы. Обусловлено это тем, что увеличение радиусов в результате возрастания числа электронных слоев при переходе от V к VI периоду компенсируется 4/-сжатием при заполнении /-орбитали у лантаноидов. Поскольку лантаноиды вклиниваются в самом начале -элементов VI периода, последующие за лими элементы вставной декады характеризуются аномально низкими величинами эффективных атомных радиусов. 4/-сжатие лантаноидов называется лантаноидной контракцией. [c.69]

    Эти отклонения в наборе электронов в атомах лантаноидов приводят и к изменению физических характеристик атомов, и в первую очередь атомных радиусов. [c.319]

    Структура атомов элементов, включающих 32-электронный слой з-, р , й , / ), который сформировался у лантаноидов (л=4, 7= ==58—71),— лантаноидное сжатие (уменьшение радиуса атомов) — от лантаноидов распространяется на последующие элементы, что сказывается на свойствах элементов с 2>71 (начиная с НГ). Например, плотность металлов от НГ до Аи — Hg примерно вдвое больше плотности -металлов пятого периода (2>39, начиная с 2г). Это закономерно, так как атомные массы -металлов, расположенных после лантаноидов, приблизительно вдвое больше атомных масс их аналогов в пятом периоде, а атомные радиусы (у 2г 0,160 нм, у НГ 0,159 нм и т. д.), и, следовательно, атомные объемы близки. Максимальную плотность имеет осмий (22,5 г/см . Химические свойства -элементов пятого и шестого периодов сходны. Так, 2г по свойствам ближе к Н5, чем к Т1 МЬ ближе к Та, чем к V Мо — к Ш, чемкСг Тс—к Ке, чем к Мп Ru— кОз, чем к Ре НЬ — к 1г, чем к Со Рс1 — к Р1, чем к N1 Ag — к Аи, чем к Си С(1 — к Hg, чем к 2п, [c.89]

    Потенциалы ионизации у атомов лантаноидов изменяются постепенно, несмотря на скачкообразные изменения радиуса атома. Хотя число электронов в подуровне 4[ различно, окислительное число (или степень окисления) почти постоянно и равно -4-3. Радиусы ионов в степени окисления +3, а также кривые изменения атомных радиусов и первых потенциалов ионизации приведены на рис. 171. У актиноидов наблюдаются те же закономерности. [c.320]

    В побочных подгруппах гораздо сильнее, чем в главных, проявляется сходство между рядом стоящими элементами. Например, железо ближе по свойствам к марганцу и кобальту, чем к рутению и осмию, которые стоят с ним в одной подгруппе. Сходство по горизонтали (гл. Н, 5) особенно велико в триадах (железо, кобальт, никель рутений, родий, палладий осмий, иридий, платина), в семействах лантаноидов и актиноидов — вследствие того, что в атомах всех этих элементов достраиваются внутренние подуровни (п—1) и (п—2)/. При достройке упомянутых подуровней атомные радиусы почти не изменяются, а у лантаноидов даже уменьшаются (гл. II, 5). [c.323]

    Радиусы атомов лантаноидов изменяются не линейно, у европия и иттербия наблюдается резкое увеличение атомных радиусов. У остальных лантаноидов по мере увеличения порядковых номеров радиусы атомов постепенно уменьшаются (рис. 92). Это явление получило название лантаноидного сжатия (или контракции) атомных радиусов (см. гл. И, П). [c.447]

    Уменьшение молярного объема до середины малого периода, несмотря на монотонное возрастание молярной массы, обусловлено более резким возрастанием плотности. Действительно, в 1А—И1А-группах располагаются металлы, обладаюш,ие плотноупакованны-ми структурами. Вследствие уменьшения атомных радиусов по периоду слева направо наблюдается уменьшение межатомных расстояний, что в совокупности с увеличением атомной массы и приводит к возрастанию плотности, а следовательно, к уменьшению молярных объемов. У простых вепдеств второй половины малых периодов, начиная с 1УА-группы, в соответствии с правилом 8—N реализуются рыхлые структуры с малыми координационными числами, что и приводит к резкому у.меньшению плотности несмотря на возрастание атомной массы. Поэтому молярные объемы во второй половине периода возрастают. Следуя этой закономерности, можно было бы ожидать, что наибольшими молярными объемами в пределах каждого периода должны обладать благородные газы (в кристаллическом состоянии). Однако вследствие образования плот-ноупакованных структур (хотя и обусловленных силами Ван-дер-Ваальса) плотность их кристаллов оказывается несколько выше ожидаемой, что и приводит к некоторому уменьшению молярного объема. У переходных -металлов с близкими по характеру упаковки кристаллическими структурами в пределах одного периода плотность варьирует в сравнительно небольших пределах с общей тенденцией увеличения от начала вставных декад к элементам УИ1В-группы (триады). С учетом монотонного возрастания атомных масс это приводит к относительному постоянству молярного объема. В ряду лантаноидов наблюдается монотонное уменьшение молярного объема, обусловленное возрастанием плотности вследствие уменьшения межатомных расстояний в кристаллах за счет лантаноидной контракции. [c.34]


    Р И с. 252. Зависимость атомных радиусов лантаноидов от их атомного номера [c.700]

    Из всех лантаноидов он больше всего похож на европий малые атомный объем и атомный радиус, пониженные (по сравнению с другими лантаноидами) плотность и температура плавления — все это свойственно европию и иттербию. Зато электропроводность у иттербия почти втрое больше, чем у других лантаноидов, включая европий. [c.157]

    Низкие плотности европия и иттербия, по-видимому, объясняются иным по сравнению с прочими лантаноидами строением кристаллических решеток европий и иттербий имеют кристаллические структуры, отличные от структур других редкоземельных элементов. Это, в свою очередь, объясняется тем, что европий и иттербий имеют выпадающие из общей последовательности аномально большие атомные объемы и атомные радиусы,— факт, вероятно, связанный с преимущественной тенденцией этих двух лантаноидов образовывать двухзарядные ионы. [c.124]

    Если уменьшение атомных радиусов у Зй- и 4(1-металлов можно назвать -сжатием, поскольку оно вызывается заполнением электронами соответствующей -подо-болочки, то лантаноидное сжатие следует квалифицировать как /-сжатие. Оно является следствием заполнения глубинной 4/-подоболочки. Эта подоболочка расположена ближе к ядру, нежели -нодоболочки, а ее экранирующее действие настолько велико, что влияние возрастающего заряда ядра сильно затормаживается. В самом деле, при переходе от церия к лютецию, т. е. на участке, включающем 14 элементов, изменение атомного радиуса выражается лишь очень небольшой величиной, равной всего 0,091 Л. Грубо говоря, в ряду лантаноидов атомные радиусы фактически остаются неизменными. Между тем атомные радиусы в 3 - и 4 -pядy изменяются на 0,31 Л, причем на участке, содержащем 10 элементов. Иными словами, при лантаноидном сжатии уменьшение атомных радиусов проявляется в значительно меньшей степени, чем при -сжатии. Это можно выразить количественно. Среднее сжатие в ряду лантаноидов (т. е. среднее уменьшение атомного радиуса на один элемент) составляет [c.129]

    В настоящее время структура большинства металлов хорюшо известна. Атомный радиус металла считают равным половине расстояния между центрами любых двух смежных атомов в решетке металла. Значения атомных радиусов металлов приведены в табл. 1.3. В пределах периода элементов атомные радиусы металлов уменьшаются, так как при одинаковом числе электронных слоев в атомах металлов возрастает заряд ядра, а следовательно, и притяжение ядром электронов. Так, для элементов третьего периода Ыа, М и А1 радиусы г, соответственно равны 189, 160, 143 пм. В меньшей степени снижается г элементов вставных декад, особенно в триадах элементов, входящих в VIII группу. Так, если г,(5с) 164 пм, то г, для Ре, Со, N1 соответственно равны 126, 125, 124 пм. Еще в меньшей степени снижается л, в рядах лантаноидов и актиноидов. Так, при переходе от Се (183 пм) к Ьи (174 пм) г, снижается всего на 9 пм. [c.50]

    В настоящее время структуры большинства металлов хорошо известны. Разделив пополам расстояние между центрами любых двух смежных атомов, мы получаем атомный радиус. Величины атомных радиусов металлов приведены в табл. 8. Атомные радиусы металлов в периодах уменьшаются, так как в них при одинаковом числе электронных слоев возрастает заряд ядра, а следовательно, и притяжение им электронов так, (Гат)на =1,89 (Гат)мг = 1.60 (га д = 1,43 А. Сравнительно медленно уменьшается г элементов вставных декад, особенно в триадах элементов, входящих в VIII группу так, если (Гат)зс = иб4 А и (/-ат)т1 = 1,46 А, то Гат ДЛЯ Рё, Со И № равны соответственно 1,26 1,25 и 1,24 А. Еще медленнее происхбдит уменьшение в подгруппе лантаноидов (и актиноидов) так, при переходе от Се (1,83 А) до Ьи (1,74 А) падает всего на 0,09 А. [c.80]

    Для атомов переходных элементов отмечаются две тенденции, определяющие в конечном итоге их химические свойства. С одной стороны, заполняющиеся внутренние d- или /-оболочки по мере увеличения электронов в них способствуют экранированию Biieuj-них rts-электронов, в силу чего их связь с ядром должна ослабляться. Но, с другой стороны, рост числа электронов на внутренних уровнях приводит к уменьшению атомного радиуса. Наиболее ярко это явление выражено у лантаноидов и получило, как известно, название лантаноидной контракции. Но оно характерно и для d-элементов ( -сжатие). В результате контракции связь внешних электронов с ядром должна усиливаться. Наложение этих двух противоположных тенденций приводит к тому, что хотя d- и /-элементы обладают металлическими свойствами, эти свойства выражены у них менее ярко, чем у s- и р-металлов. [c.16]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Различие между простыми и переходными металлами проявляется уже ири сравнении атомных радиусов (см. рис. 23). й-, /-Элементы характеризуются меньшими значениями радиусов, чем зр-металлы. Кроме того, различие атомных радиусов у 5р-элементов-аналогов значительно больше, чем у элементов вставных декад. Так, у щелочных металлов радиусы изменяются от 0,25 для КЬ и Сз до 0,155 нм у а атомные радиусы всех с(-31лементов укладываются в интервале 0,13—0,16 нм. Это обусловлено заполнением вакантных орбиталей в уже существующей предвнешней оболочке у -элементов. Еще более близки атомные радиусы у /-металлов, что объясняется заполнением третьего снаружи энергетического уровня. Так, все элементы семейства лантаноидов имеют атомные радиусы в пределах 0,171—0,184 нм. Исключением являются европий и иттербий, которые, обладая стабильной структурой и характеризуются атомными радиусами, равными соответственно 0,202 и 0,19 нм. [c.371]

    Гидроксиды лантаноидов, поми-58596061 62636465666768 6970 71 МО ЭТОГО, получают взанмодействи-ийШмандямнйЛ ем этих металлов с водой (при на-Рис. 92. Изменение атомных радиусов гревании), а также в результате у лантаноидов обменных реакций между солями [c.448]

    ДИСПРОЗИЙ (от греч. dysprositos-труднодоступный лат. Dysprosimn) Dy, хим. элемент 1П гр. периодич. системы относится к редкоземельным элементам (иттриевая подгруппа лантаноидов), ат. и. 66, ат. м. 162,50. Состоит из 7 стабильных изотопов Dy, Dy, Dy, Dy, Dy, Dy и Dy. Поперечное сечение поглощения тепловых нейтронов 10 м . Конфнгурахщя внеш. электронных оболочек 4/°5i 5p 5d 6j, степени окисления -ЬЗ, реже +2, +4 энергия ионизации Dy° - Dy -> Dy " - Dy " - Dy соотв. 5,93, 11,67, 22,79, 41,47 зВ атомный радиус 0,177 нм, ионный радиус (в скобках указано координац. число) Dy 0,121 нм (6), 0,127 нм (7), 0,133 нм (8), Dy 0,105 нм (6), 0,111 нм (7), 0,117 нм (8), 0,122 нм (9), Dy "- 0,087 нм (8). [c.82]

    ПРОМЕТИЙ (по имени титана Прометея в др.-греч. мифологии лат. Ргоше1шш) Рт, хим. элемент III гр. периодич. системы относится к редкоземельным элементам (церневая подгруппа лантаноидов) ат. н. 61, ат. м. 144,9128. В природе стабильных изотопов не имеет. Наиб, долгоживущие изотопы- Рш(Г1,2 18 лет), Рш(Г1,22 года), Рш(Г1,2 2,64 года). Конфетурация внеш. электронных оболочек атома степень окисления -ЬЗ энергин ионизации при последоват. переходе от Рт° к Рт соотв. 5,55, 10,90, 2 32, 41,09, 61,7 эВ атомный радиус 0,182 нм, ионный радиус Рш 0,111 нм (координац. число 6). [c.100]

    САМАРИЙ (обнаружен в минерале самарските, названном в честь рус. геолога В. Б. Самарского-Быховца лат. Samarium) Sm, хим. элемент 111 гр. периодич. системы относится к редкоземельным элементам (цериевая подгруппа лантаноидов) ат.н. 62, ат.м. 150,36. Природный С, состоит из стабильных изотопов Sm (3,09%), Sm (11Д7%), Sm (13,82%), Sm (7,47%). Sm (26,63%), Sm (22,53%) и радиоактивного изотопа Sm (15,07%, Т, 2 1,3-10 лет, а-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 5,6-10 м . Конфигурация внеш. электронных оболочек атома 4/ 5i 5р степени окисления -Ь 3, -Ь 2 и, вероятно, + 4 энергии ионизации при последоват. переходе от Sm к Sm соотв. 5,63, 11,07, 23,43, 41,37, 62,7 эВ электроотрицательность по Полингу 1,0-1,2 атомный радиус 0,181 нм, ионные радиусы (в скобках даны координац. числа) Sm 0,136 нм (7), 0,141 нм (8), 0,146 нм (9), Sm 0,110 нм (6), 0,116 нм (7), 0,122 нм (8), 0,127 нм (9), 0,138 нм (12). [c.289]

    ТУЛИЙ (от Греч. Thule - Туле, у античных географов - крайний северный предел мира лаг. Thulium) ТЪ, хим. элемент Ш ф. периодич. системы относится к редкоземельным зяе-ментам (иттриевая подфуппа лантаноидов), ат. н. 69, ат. м. 16Й,9342, В природе один стабильный нуклид Тт. Конфигурация внеш. электронных оболочек атома 4/ 5s 5p 6s степени окисления +3, +2, реже +4 энергии ионизации при по-следоват. переходе от Тш к Тт соотв. 6,181, 12,05, 23,68, 42,69, 65,4 эВ ялектроотрицатеяьность по Полингу 1,0-1,2 атомный радиус 0,174 нм, ионные радиусы Тт (в скобках указаны координац, числа) 0,102 нм (6), 0,113 нм (8), 0,119 нм (9), 0,117 нм (6), 0,123 нм (7). [c.16]

    Мы уже указывали, какова общая закономерность изменения атомных радиусов и эффективных зарядов ядра для элементов в пределах одной группы периодической системы. Например, для элементов группы 1А при переходе сверху вниз вдоль группы 2эфф оказывается приблизительно постоянным, а атомный радиус возрастает. Значения потенциалов ионизации этих элементов, приведенные в табл. 6.2, при переходе сверху вниз вдоль группы последовательно уменьшаются. Такого изменения в общем следует ожидать для всех остальных групп периодической системы, хотя на самом деле встречаются исключения они наблюдаются у элементов, непосредственно следующих за лантаноидами в шестом периоде (с порядковыми номерами от 72 до 82). У этих элементов необычно малы атомные радиусы (см. рис. 6.6), что объясняется сокращением радиуса при заполнении 4/-поду-ровня (у элементов с порядковыми номерами от [c.99]

    А, в то время как соседи по группе и КЬ имеют радиусы 1,33 и 1,48 А соответственно. В периодах у ионов ( -элементов одинакового заряда радиусы уменьшаются с ростом заряда ядра так, г (Мп ) = = 0,80 А, а г (N1 ) = 0,69 А. Это уменьшение радиусов ионов -элементов, аналогичное уменьшению радиусов атомов этих элементов, называется -сжатием. Оно особенно заметно для элементов УХПВ подгруппы. Уменьшение ионных радиусов лантаноидов (радиус трехвалентных ионов уменьшается от церия к лютецию от 1,07 до 0,85 А) называется, как и в случае атомных радиусов, лантаноидным сжатием. [c.122]

    Среди переходных элементов бросается в глаза особенно высокая плотность в подгруппах IVA — VIII, 1Б шестого периода. У главных переходных элементов пятого и шестого периодов атомные радиусы металлов почти одинаковы, и существенную роль играет возрастание атомного номера (у лантаноидов эту тенденцию проследить не удается у взЕи и oYb плотность мала, это согласуется со структурами и 4f , т. е. наполовину и полностью заполненными f-орбиталями). [c.121]


Смотреть страницы где упоминается термин Лантаноиды атомные радиусы: [c.170]    [c.373]    [c.348]    [c.590]    [c.126]    [c.619]    [c.531]    [c.443]    [c.348]    [c.125]   
Химия справочное руководство (1975) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Лантаноиды



© 2025 chem21.info Реклама на сайте