Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомная орбиталь второго периода элементы

    Ион трииодида (I — I — I)", который в общем считается устойчивым соединением, представляет собой комплекс такого же типа, как и комплексы иода с пиридином, причем роль пиридина играет анион иодида. Иногда считают, что взаимодействия с переносом заряда с элементами второго периода или более тяжелыми элементами в качестве акцепторов заключаются в подаче электрона на свободные a-орбитали акцептора. Однако в данном случае существенное взаимодействие может происходить без этого, а устойчивость трииодида можно объяснить при помощи простой модели молекулярных орбиталей [20], подобной той, которая была описана для водородной связи. Рассмотрим три атома иода, каждый из которых предоставляет для образования связи по одной jo-орбитали. Из этих трех атомных орбиталей можно построить три молекулярные орбитали, показанные на схеме (8), на которых можно разместить четыре электрона трииодид-иона  [c.340]


    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]

    Правило Хунда. При заполнении вырожденных атомных орбиталей возможны два крайних случая (рис. П1Л, а и б). Согласно правилу Хунда, электроны вначале занимают по одному все вырожденные орбитали, образуя конфигурации с максимальным числом неспаренных. электронов. После такого распределения добавление электронов прт -водит к образованию пар и заполнению атомных орбиталей в соответствии с принципом Паули. Одной из иллюстраций правила Хунда является способ размещения электронов на 2р-орбиталях атомов эле ментов второго периода от бора до неона. Заполнение электронами -орбиталей в атомах переходных элементов приводит к образованию конфигурации с пятью неспаренными электронами. [c.171]

    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]


    ТРЕТИЙ короткий период также состоит из 8- и р-элементов. В связи с ростом главного квантового числа уменьшается энергия связи внешних электронов с ядром и увеличивается размер внешних атомных орбиталей. Поэтому электроотрицательность элементов третьего периода меньше, чем элементов второго периода. По сравнению со вторым периодом увеличивается размер электронного остова - он включает уже 10 электронов 1з 28 2р (оболочка неона - [Ne]). Образование р -р -связей практически невозможно из-за увеличения остова, поэтому, в частности, все простые вещества от натрия до серы представляют собой не молекулярные вещества, а металлические или атомные кристаллы. При этом внутри каждой группы элементы второго и третьего периодов близки по свойствам, так как их электронные конфигурации аналогичны, они различаются лишь главным квантовым числом. Элементы первых трех периодов Менделеев назвал типическими -в них выражены, как в образцах и в наиболее ясной форме, все виды и свойства, но и со своими особенностями . [c.238]

    Чаще всего в полуэмпирических методах используют валентное приближение, согласно которому в разложении МО в ЛКАО учитывают только электроны и соответствующие им орбитали валентной оболочки внутренние электроны, например Is углерода и других элементов второго и высших периодов, считаются локализованными на соответствующих атомных орбиталях и образуют неполяризованный остов. [c.198]

    В молекулах элементов второго периода МО образуются в результате взаимодействия атомных 25- и 2р-орбиталей участие внутренних 15-электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 49 приведена энергетическая схема образования молекулы г здесь имеются два связывающих электрона, что соответствует образованию простой связи. В молекуле же Веа число связывающих и разрыхляющих электронов одинаково, так что эта молекула, подобно молекуле Нез, [c.147]

    Строение и свойства двухатомных молекул Ы2, В2, Сг, N2, О2, F2, СО, N0 и др. наиболее просто, наглядно и правильно объясняются методом МО. В молекулах элементов второго периода МО образуются в результате взаимодействия атомных 2s- и 2р-орбиталей участие внутренних ls-электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 4.20 приведена энергетическая схема образования молекулы Lia здесь имеются два связывающих электрона, что соответствует образованию простой связи. [c.127]

    Схематическое изображение перекрывания атомных орбиталей и молекулярные орбитали двухатомных молекул элементов второго периода показаны на рис. 42 на рис. 43 приведены значения числа [c.76]

    Для понимания основных химич. свойств Н. п. уместно сравнить их с полимерами углерода. Как известно, в таблице Д. И. Менделеева углерод занимает особое положение, состоящее в способности к образованию только чисто ковалентных связей (за счет неспаренных электронов). Элементы слева от IV группы образуют донорно-акцепторные связи М <— L (за счет вакантных орбиталей атома М), а справа от IV группы — дативные связи М —> L (за счет непо-деленных пар атома М). При образовании таких гетеро-атомных связей возникают соответствующие смещения электронной плотности (между донором и акцептором электронов), связанные иногда с возникновением заметной полярности. Такие частично ионные связи обычно прочнее чисто ковалентных. Кроме того, если атом М принадлежит к элементам второго периода (В, N, О), а атом L — к элементам третьего или последующих периодов, т. е. имеет валентные d-орби-тали, то кратность и реальная прочность связи типа М — L м. б. выше, чем в цепях органич. полимеров. Поэтому среди линейных Н. п. такого типа должны встречаться весьма термостойкие вещества. [c.180]

    Схематическое изображение перекрывания атомных орбиталей и молекулярные орбитали двухатомных молекул элементов второго периода показаны на рис. 42 на рис. 43 приведены значения числа связей (совпадение с рис. 40), межъядерного расстояния Го(к ) и энергии связи (кДж/моль), причем опять наблюдается обратная связь между Го и . [c.78]

    У элементов второго периода появляются еще четыре атомных орбитали 2в, 2р , 2ру, 2р , которые будут принимать участие в образовании молекулярных орбиталей. Различие в энергиях 7. - и 2р-орбиталей велико, и они не будут взаимодействовать между собой с образованием молекулярных орбиталей. Эта разница в энергиях при переходе от первого элемента к последнему будет увеличиваться. В связи с этим обстоятельством электронное строение двухатомных гомоядерных молекул элементов второго периода будет описываться двумя энергетическими диаграммами, отличающимися порядком расположения на них 5 " 2рх и 2ру 2. При относительной энергетической близости 2 - и 2р-орбиталей, наблюдаемой в начале периода, включая атом азота, электроны, находящиеся на 2 - и 2рх-орбиталях, взаимно отталкиваются. Поэтому 2ру- и 2р2-орбитали оказываются энергетически более выгодными, чем 2рх-орбиталь. На рис.20 представлены обе диаграммы. Так как участие Ь-электронов в образовании химической связи незначительно, их можно не учитывать при электронном описании строения молекул, образованных элементами второго периода. [c.57]


    ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ, квантовохим. способ описания перестройки орбиталей атома в молекуле по сравнению со своб. атомом. Являясь формальным мат. приемом, Г. а. о. позволяет отразить нарушение сферич. симметрии распределения электронной плотности атома при образовании хим связи. Сущность Г а. о. состоит в том, что электрон молекулы вблизи выделенного атомного ядра характеризуется не отдельной атомной орбиталью (АО), а линейной комбинацией атомных орбиталей с разл. значениями азимутального и магнитного квантовых чисел. Такая линейная комбинация наз. гибридной (гибридизированной) орбиталью (ГО). Как правило, гибридизация затрагивает лишь высшие и близкие по энергии занятые АО своб. атома Напр, для атомов элементов второго периода периодич. системы типичная фор- [c.545]

    ПЯТЫЙ длинный период отличается от четвертого общим уменьшением электроотрицательности, усилением металлических и ослаблением неметаллических свойств. Это обусловлено ростом главного квантового числа валентных электронов и, соответственно, уменьшением энергии связи внешних электронов с ядром и увеличением размеров внешних атомных орбиталей. В целом же картина повторяется период начинается з-элементами - активными металлами рубидием и стронцием, затем следует вставная декада -элементов - второй переходный ряд элементов от иттрия до кадмия и завершается период р-элементами от индия до ксенона. [c.239]

Рис. 1.48. Изменение энергии атомных 21- и 2р-орбиталей для атомов элементов второго периода Рис. 1.48. <a href="/info/12494">Изменение энергии</a> атомных 21- и 2р-орбиталей для атомов <a href="/info/599629">элементов второго</a> периода
    В этой главе мы рассмотрим два возможных объяснения значений углов между связями в молекулах элементов первых трех периодов таблицы Менделеева. В первой модели основное внимание уделяется происхождению связей из атомных орбиталей — так же как мы это делали, используя ячейки. Такая модель называется гибридизацией орбиталей. Во второй модели происхождение орбиталей не рассматривается, а учитывается только количество пар валентных электронов вблизи каждого атома — аналогично представлению электронных пар для связи. Такой подход называется моделью отталкивания электронов. Сначала мы подробно исследуем обе эти теории, а затем рассмотрим, как форма молекулы отражается на ее дипольном моменте. [c.167]

    Определим кратности связей и числа неспаренных электронов в гомоядерных, т. е. состоящих из одинаковых атомов, молекулах элементов второго периода. При этом запись молекулярных орбиталей упростим, опустив символы атомных орбита-лей, из которых они образуются. [c.174]

    В 18-клеточной форме таблицы Менделеева (см. табл. 4) отчетливо виден переходный характер d-металлов, которые служат своеобразным связующим звеном между s- и sp-элементами (ПА— П1А группы). Дефектные / металлы в этой форме таблицы рассматриваются как аналоги лантана и актиния, хотя, строго говоря, в полной мере таковыми не являются. Чтобы отразить специфику /-элементов, целесообразно воспользоваться длиннопериодной таблицей (см. табл. 5), в которой лантаноиды и актиноиды представляют переход между ( -элементами П1В и IVB групп VI и VII периодов. Эта развернутая форма таблицы с выделенными связующими d- и /-рядами подтверждается характером периодичности изменения первого ионизационного потенциала в зависимости от атомного номера элемента (см. рис. 21). Действительно, из рис. 21 следует, что в рядах sp-элементов малых периодов ионизационный потенциал меняется очень резко. В четвертом периоде с появлением первой вставной Зй -декады (от Se до Zn) наблюдается более плавное изменение ионизационного потенциала, что обусловлено заполнением внутреннего энергетического уровня. Аналогичная картина имеется для элементов V периода, включающих Ad-декаду переходных элементов (от Y до d). В VI периоде имеются две области плавного изменения ионизационного потенциала. Первая из них в соответствии с табл. 5 отвечает заполнению 4/-орбиталей у 14 лантаноидов (от Се до Lu), а вторая область — заполнению 5с/-орбиталей у третьей вставной декады (Hf—Hg). Подобное же положение характерно для VII периода, в котором после актиния начинается застройка 5/-орбиталей у элементов семейства актиноидов. [c.367]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    Распространение метода ЛКАО на гомоядер ные двухатомные молекулы второго периода периодической системы элементов Д. И. Менделеева дает атомные орбитали (АО) 2 , 2рх, 2ру и 2р . Условимся за ось X принимать ось, совпадающую с осью молекулы. У обоих атомов А — Л она. направлена навстречу. Атомная орбиталь 25-электрона имеет сферическую симметрию, перекрывание 2 - и 2рх-АО симметрично относительно оси молекулы. Такие МО называются а-молекуляр-ными орбиталями. Перекрывание 2ру- и 2р -кО дает я-МО. я-Моле-кулярные орбитали несимметричны относительно оси молекулы. При повороте я-МО вокруг оси молекулы на 180° знак МО меняется на противоположный. Различают связывающую а-МО и разрыхляющую сг -МО, связывающую я-МО и разрыхляющую я -МО. Порядок связи [c.11]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    Например, можно было бы предположить, что 19-й электрс Н в атоме калия размещается на З -подуровне. Однако энергия 45-подуровня оказывается меньше, чем подуровня 3(1, так как для 45-подуровня /г+/=4+0=4, а для Зк +/=3+2=5. В случае если сумма п+1 для двух электронов одинакова (например, для 3(1- и 4р-подуровней п+1= =5), то сначала электроны занимают атомную орбиталь, соответствующую меньшему п (второе правило Кмчковско-го). Поэтому формирование электронных оболочек атомов элементов 4-го периода происходит в такой последовательности  [c.18]

    Индексы у энергетических уровней молекулярных а- и я-ор-биталей указывают тип атомных орбиталей, из которых образована каждая молекулярная орбиталь. Энергетическим уровням а(или а )-типа соответствует по одной молекулярной орбитали, но уровням я(или тс )-типа соответствует по две молекулярных орбитали (напомним, что у атомов элементов второго периода имеется по три 2р-орбитали два атома образуют друг с другом одну пару МО а-типа в результате встречного перекрывания одной пары 2р-орбиталей и две пары МО я-типа вследствие бокового перекрывания двух пар 2р-орбиталей). Диаграмма, показывающая образование молекулярных орбиталей из валентных атомных орбиталей в двухатомных молекулах элементов второго периода, имеет указанный ниже вид. [c.122]

    Потенциал ионизации и электроотрицательность элементов в двухмерной системе должны меняться как и в обычной трехмерной системе. Потенциалы ионизации должны возрастать при переходе от элементов с частично заполненными атомными я- и -орбиталями к элементам с полностью заполненными орбиталями, т. е. для элемента № 4 Плосколандии потенциал ионизации должен быть выше, чем у элементов № 3 и № 5, а потенциал отрыва электрона у элемента № 5 (р-электрон) должен быть выше, чем у элемента № 3 (х-электрон). Максимальный потенциал ионизации должен иметь элемент № 8. Потенциалы ионизации для элементов № 6 и № 7 определяются неоднозначно, но если учесть, что с приближением к полностью заполненному р-слою потенциалы ионизации. должны возрастать, то вполне правдоподобно изменение потенциала ионизации и электроотрнцательности для элементов первого и второго периодов, как показано иа рис. 4. [c.95]

    Энергия релаксации зависит от электронной конфигурации, но не зависит от различных состояний в рамках одной электронной конфигурации. Наблюдается также некоторая зависимость рел(А) от низко- или ВЫСОКОСПИНОВОГО характера конфигурации [171]. Энергию Ерел А) можно представить в виде суммы вкладов от отдельных атомных орбиталей [171, 172], причем вклад от одного электрона (2s и 2р для элементов второго периода, 3d для переходных элементов) уменьшается с увеличением порядкового номера. Общую энергию релаксации внутреннего уровня Ерел в молекуле также можно представить в виде суммы вкладов от отдельных МО [171, 172]. Для сложных молекул можно приближенно выделить вклады в Ерел изучаемого атома от групп, связанных с этим атомом [173]. [c.53]

    Второй длинный период, от рубидия (2 = 37) до ксенона (2 = 54), построен аналогично используются 55-, 4с1.- и 5р-орби-талн. В следующих элементах, цезии (2 = 55) и барии (2 = 56), используются б5-орбитали. Из рис. 1.13 видно, что для этого значения 2 наблюдается очень небольшая разница в энергии между следующими наиболее энергетически выгодными орбиталями 4/ и 5с1. В действительности на основании измерений атомных спектров лантану (2=57) приписана конфигурация (Хе)5йб52, тогда как в случае следующих четырнадцати элементов, заканчивающихся лютецием (2 = 71), заполняются семь вырожденных 4/-орбиталей и эти элементы называются ланта-нидами. После лютеция и до радона (2 = 86) последовательно заполняются М- и бр-орбитали. [c.30]

    Для ряда молекул, состоящих из атомов элементов первого и второго периодов, а такн<е для некоторых молекул, включающих фосфор, мышьяк, сурьму, серу, селен, теллур и галогены, в [193] были рассчитаны дипольные моменты. Расчет проводился в приближении точечных зарядов и с учетом поляризации атомов по методу Попла — Сегала (см. 2). Сравнение значений диполь-ных моментов, рассчитанных с использованием параметров систем М2, 02 и Попла — Сегала, с данными эксперимента не выявило преимущества какой-либо системы. Дипольные моменты молекул, состоящих из элементов второго периода, вычисленные с учетом атомной поляризации, находятся в удовлетворительном согласии с экспериментальными данными. Для соединений, содержащих атомы с -электронами, дипольные моменты получаются гораздо менее точными, что объясняется отсутствием -орбиталей в базисной системе. [c.78]

    Исходя из концепции электростатической внутримолекулярной энергии и не учитывая влияния полярностей связей, можно рассчитать величины для гибридных орбиталей этементов второго периода как сзгммы энергий 1 улоновского взаимодействия между точечными атомными зарядами и между зарядами атомов водорода и точечными атомными диполями элементов, как [c.126]


Смотреть страницы где упоминается термин Атомная орбиталь второго периода элементы: [c.523]    [c.530]    [c.201]    [c.111]    [c.68]    [c.149]    [c.76]    [c.170]    [c.397]    [c.217]    [c.130]    [c.33]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.5 , c.56 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Второго периода элементы

Орбиталь атомная



© 2024 chem21.info Реклама на сайте