Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород катодное выделение

    Изменение скорости электродных процессов под влиянием образования активированных комплексов указанного выше типа возможно и с другими передатчиками электронов. Так, при совместном разряде ионов марганца и водорода катодное выделение последнего определяется кинетическими закономерностями разряда ионов Мп +, что, по-видимому, является следствием протекания реакции выделения водорода через промежуточный комплекс НгО — — [c.386]


    Выделение водорода. Катодное выделение водорода всегда имеет место при электролизе водных растворов электролитов. Реакция катодного восстановления водорода протекает на некоторых металлах со значительным перенапряжением, существенно превышающим перенапряжение многих других электродных реакций. Величина водородного перенапряжения зависит от многих факторов, и в первую очередь от состава раствора, материала катода и состояния его поверхности, плотности тока и температуры. Рассмотрим возможные пути выделения водорода из кислых и щелочных растворов. [c.57]

    Первым на возможность медленного протекания такой электрохимической стадии указал Р. А. Колли (1880). Большое значение для понимания причин, обусловливающих конечную скорость этого акта, имели работы Леблана (1910) и Н. А. Изгарышева (1915), привлекшие внимание электрохимиков к той важной роли, которую играют явления гидратации и д( гидратации нонов в кинетике электродных процессов. Н. И. Кобозев и Н. И. Некрасов (1930) на примере реакции катодного выделения водорода впервые показали, что состояние частиц, в котором они находятся непосредственно после акта разряда, мол ет существенно отличаться от состояния конечных продуктов электродной реакции. Скорость актов раз- [c.344]

    Если продукты восстановления (или окисления) адсорбируются на электроде, экранируя заметную часть его поверхности 0, которой уже нельзя пренебречь, то уравиение (17.67) должно быть модифицировано в соответствии с кинетическими особенностями, отличающими данную электродную реакцию. Этот случай целесообразно рассмотреть на примере реакции катодного выделения водорода из кислых и щелочных сред  [c.361]

    Слабые органические основания В способны катализировать процесс катодного выделения водорода, образуя с ионами водорода положительно заряженные адсорбированные на электроде частицы ВН+  [c.395]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


Таблица 19.1. Значения констант а и Ь формулы Тафеля для катодного выделения водорода на различных металлах / = 20 2°С Таблица 19.1. <a href="/info/264707">Значения констант</a> а и Ь <a href="/info/334823">формулы Тафеля</a> для катодного выделения водорода на различных металлах / = 20 2°С
    ВОЗМОЖНЫЕ СТАДИИ И ПУТИ ПРОТЕКАНИЯ ПРОЦЕССА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА [c.403]

    Уравнения реакций (19.1), (19.2) и (19.3) представляют собой суммарное выражение процесса катодного выделения водорода при различных условиях электролиза. Этот процесс состоит из ряда последовательных стадий и может протекать по различным путям в зависимости от конкретных условий. Первая стадия — доставка к поверхности электрода частиц, служащих источником получаемого катодного водорода, протекает в данном случае без существенных торможений. Следующая за ней стадия отвечает разряду ионов водорода (или молекул воды) с образованием адсорбированных атомов водорода  [c.403]

    Временно наиболее эффективным способом удаления адсорбированного водорода. При диффузионном механизме все стадии протекают быстрее, чем удаление молекулярного водорода, растворенного в слое электролита, примыкающем к поверхности электрода. Кроме перечисленных, возможны также и другие кинетические варианты катодного выделения водорода. Так, например, может оказаться, что константы скорости двух или большего числа стадий мало отличаются друг от друга. Тогда при изменении условий, в которых происходит реакция, один механизм может замениться другим. При неизменных условиях на одном и том же электроде вследствие неоднородности его поверхности могут существовать участки, где выделение водорода совершается разными путями. [c.406]

Таблица 19.2. Возможные комбинации стадий, определяющих скорость (А) и обеспечивающих стационарность (В) процесса катодного выделения водорода Таблица 19.2. <a href="/info/1372594">Возможные комбинации</a> стадий, определяющих скорость (А) и обеспечивающих стационарность (В) <a href="/info/1552089">процесса катодного выделения</a> водорода
    Действительный механизм катодного выделения водорода на каждом данном металле удается установить на основании всесторонних экспериментальных исследований и их сопоставления с выводами, вытекающими из теории возникновения различных видов перенапряжения. [c.406]

    Представление о том, что электрохимическая десорбция может определять скорость катодного выделения водорода, было сформулировано впервые Гейровским в 1925 г. [c.407]

    Эти соображения, высказанные Л. И. Антроповым, привели его к заключению о существовании двух крайних групп металлов с различным механизмом перенапряжения водорода. К первой нз них относятся металлы групп платины и железа, обладающие высокой адсорбционной способностью по отношению к водороду. На этих металлах стадия рекомбинации должна играть решающую роль в кинетике катодного выделения водорода. Вторая группа включает ртуть, свинец, кадмий и другие металлы, почти не адсорбирующие водород. На металлах второй группы кинетика выделения водорода определяется стадией разряда. [c.412]

    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]

    Присутствие адсорбированного или окклюдированного водорода все-таки не может считаться главным фактором, определяющим специфику катодного выделения металлов. [c.468]

    Значение констант а и Ь уравнения Тафеля для реакции катодного выделения водорода на разных металлах при ( = 20° С [c.619]

    Если контактирующие металлы погружены в неаэрируемые растворы, где коррозия сопровождается выделением водорода, увеличение площади более благородного металла приводит к увеличению коррозии менее благородного. На рис. 6.6 предста ены поляризационные кривые для анода, слабо поляризованного по сравнению с катодом, на котором происходит выделение водорода (катодный контроль). Наклон кривой 1 отвечает поляризации более благородного металла, имеющего высокое водородное перенапряжение. Наклоны кривых 2 и 3 отвечают металлам с низким водородным перенапряжением. Проекции точек пересечения анодных н катодных поляризационных кривых на ось lg I дают соответствующие гальванические токи. Заметим, что любой металл, на котором происходит разряд ионов водорода, является водородным электродом, который при давлении водорода 0,1 МПа имеет равновесный потенциал —0,059 pH вольт. Рис. 6.7 иллюстрирует случай, когда корродирующий металл контактирует с более благородным, имеющим переменную площадь. На оси абсцисс вместо логарифма полного тока нанесен логарифм плотности тока. Если анод площадью Ла контактирует с более благородным металлом площадью Л , то плотность гальванического тока на аноде в результате контакта будет равной [c.114]


    При высокой температуре в воздухе, азоте или водороде. Окисление на. воздухе протекает при температурах выше 450 С с образованием оксидов титана и нитридов. Температура воспламенения падает с повышением давления воздуха, что иногда приводит к локализованному выгоранию изготовленных из титанового сплава лопаток компрессоров газовых турбин [42]. Гидрид титана легко образуется при температурах выше 250 °С, а при более низких температурах — при катодном выделении водорода. Абсорбция кислорода, азота или водорода при повышенных температурах приводит к охрупчиванию металла. [c.378]

    Потенциодинамическим методом получали кинетические параметры электродного процесса при различных pH, на основании которых рассчитывали значения критериев реакции катодного выделения водорода. В результате анализа соответствия величин критериев требованиям той или иной теории установили влияние ингибитора ИКУ-1 на механизм процесса в НС1 и реагенте РВ-ЗП-1. Относительная ошибка определения плотности тока коррозии стали в сериях из пяти опытов составляла не более 2%. [c.284]

    В табл. 36 приведены значения критериев реакции катодного выделения водорода на стали 20, которые вычисляли на основании аналитической обработки зависимостей, представленных на рис. 49-54. [c.285]

    Значения критериев реакции катодного выделения водорода [c.300]

    Из экспериментальных и расчетных данных (см. табл. 1) следует, что 1на-чения критериев процесса катодного выделения водорода в неингибированной среде ближе к требованиям теории замедленной рекомбинации. Вероятно, на [c.181]

    Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Основой этой теории служит классическое учение о кинетике гетерогенных химических реакций. Количественные соотношения между величиной перенапряжения г и плотностью тока / были получены при использовании принципа Бренстеда о параллелизме между энергией активации 7а и тепловым эффектом <3р (или изобарным потенциалом АО) в ряду аналогичных реакций. Квантовомеханическая трактовка электродных процессов начала формироваться лишь сравнительно недавно, хотя отдельные попытки в этом направлении предпринимались уже начиная с середины 30-х годов (Герни, О. А. Есин и др.). Основные исследования в этом направлении были выполнены Бокрисом, Догонадзе, Христовым и др. [c.346]

    Формулы (17.14) и (17.15) отвечают уравнениям Эрдей-Груза и Фольмера, выведенным применительно к реакциям катодного выделения водорода. В уравнен и (17.17) ток обмена является функцией концентраций частиц Ох и Red. Если сох= 1 и ned=l, то частное значение тока обмена, отвечающее таким единичным концентрациям, называется стандартным током обмена /%. Очевидно, что [c.350]

    В результате электрохимического акта образуется адсорбированный катодом атомарный водород. При заданной плотности тока доля поверхности электрода, занятая атомами водорода, составляет некоторую величину 0 н. Если поляризация электрода обусловлена только замедленностью электрохимической стадии, то все остальные стадии, в том числе и удаление адсорбированного водорода, совершаются с несравненно большими скоростями, чем перенос заряда, и, следовательно, заполнение при данном токе должно быть равно (или почти равно) заполнению 0н в отсутствие результативного тока, т. е. при равновесном потенциале водородного электрода 0 н = 0н- Степень заполнения поверхности электрода адсорбированным атомарным водородом в условиях его катодного выделения определяется в первую очередь природой металла и для данного металла зависит от потенциала электрода. Она ничтожно мала (0 = 0) на Нд, РЬ, Сс1 и на других мягких или ртутеподобиых металлах. В согласии с этим выделение водорода по реакциям (17.78) и (17.79) может происходить несколькими путями и, соответственно, описываться различными кинетическими уравнениями. [c.361]

    В области потенциалов, лежащих иа участке 1 вблизи участка 2 при наложении катодного толчка тока, возможен разряд ионов водорода с образованием адсорбированн1з1х атомов водорода. Появление молекулярного водорода и выделение его в газообразной форме исключены, так как потенциалы здесь более положительны, чем равновесный потенциал водородного электрода в данном растворе. [c.415]

    Допущение о том, что выделение металла совершается не как последовательная стадийная реакция, а как один элементарный акт, противоречит всем результатам, полученным при изучении кинетики различных электрохимических процессов. Например, для реакции катодного выделения водорода принятие такого допущения привело бы к не отвечающему действительности выводу о независимости водородного перенапряжения от природы металла. Чтобы объяснить связь, существующую между металлическим перенапряжением и природой металла, а также характер влияния состава раствора на величину перенапряжения, необходимо принимать во внимание не только начальное и конечное состояния металлических ионов, но и природу элементарных актов. При зтом следует учитывать состояние и озойства реагирующих частиц на разных стадиях суммарного процесса. [c.466]

    Перенапряжение водорода при выделении его на технических металлах из 2-н. раствора Н2504 приведено на рис. 175. Присутствие в растворе и адсорбция на катодной поверхности некоторых веществ (солей мышьяка и висмута, некоторых органических веществ) увеличивают перенапряжение водорода. С повышением температуры перенапряжение водорода уменьшается (примерно на 2—4 мВ на 1 град для металлов с большим перенапряжением водорода). [c.252]

    Перенапряжение реакции вызвано замедлением стадии химической реакции, предшествующей электрохимической стадии или последующей ей. Если электрохимическая стадия представляет собой, например, процесс Ох + ze Red, то предшествующая разряду химическая реакция может быть в общем виде представлена как vA -> Ох, а последующая vRed -> В. Например, при катодном выделении меди из раствора, в котором содержится u( N)2, до разряда идет химическая реакция u( N)2 u N + N", после чего наступает электрохимическая — u N + i" u + N". При выделении водорода за счет разряда ионов НзО образуются атомы водорода, которые затем участвуют в реакции молизации 2Н -> - Н2. [c.509]

    ООО, охрупчивания не происходит. Контакт платины с танталом может быть осуществлен с помощью клепки, сварки или электролитическим осаждением. Металл, охрупченный при катодном выделении на нем водорода или вследствие наводорожи-вания при повышенных температурах, можно восстановить до обычного состояния только нагревом в вакууме. [c.383]

    В кислороде, азоте или водороде при повышенных теМяера-турах. Скорость окисления на воздухе становится существенной при температурах выше 250 °С. Катодное выделение водорода на тантале приводит к охрупчиванию металла при комнатной температуре. [c.384]

    Значения критериев реакции катодного выделения водорода в среде NA E [c.274]

    В реагенте РВ-ЗП-1 проявляется специфическое влияние А1С1з на кинетику коррозии процесс протекает с выраженным анодным контролем, а стадийность реакции катодного выделения водорода не оказывает существенного воздействия на скорость коррозии стали и ее механические свойства. Так, снижение относительного удлинения стандартных образцов стали при испытаниях на разрыв в реагенте РВ-ЗП-1 не превышает 0,5%. [c.288]

    В табл. 44 представлены численные значения критериев оценки механизма реакции катодного выделения водорода на стали 20 в неингибированной и ингибированной разработанными реагентами среде NA E. [c.300]

    Из табл. 44 следует, что значения критериев в среде NA E ближе к требованиям теории замедленной рекомбинации. Напротив, при дозировании ингибиторов в коррозионной среде величины критериев больше соответствуют расчетным значе-ниям теории замедленного разряда, то есть в данном случае катодное выделение водорода лимитирует стадия разряда. Таким образом, в присутствии ингибиторов наблюдается выгодная с точки зрения снижения скорости коррозии и наводороживания металла инверсия лимитирующей стадии катодного выделения водорода, которая способствует снижению его окклюзии и, соответственно, охрупчиванию металла. [c.300]

    Известно [11. 12], что экспериментальными критериями, определяющими механизм катодного выделения водорода в неингибированных и ингибированных кислых коррозионных средах, являются величины производных йЕк- арН и olg i ./iTpH, которые характеризуют зависимость кинетических параметров реакции от pH среды. Основные особенности механизма выделения водорода подробно проанализированы в [13, 14, 15] и представлены в табл.1. Для теории замедленной электрохимической десорбции при достаточно высоких перенапряжениях значения кинетических параметров реакции не отличаются от та-ковых лля тсорнн замедленного разряда [2 . [c.181]


Смотреть страницы где упоминается термин Водород катодное выделение: [c.31]    [c.345]    [c.347]    [c.359]    [c.396]    [c.397]    [c.409]    [c.417]    [c.468]    [c.48]    [c.291]    [c.306]   
Химия справочное руководство (1975) -- [ c.495 ]

Ингибиторы кислотной коррозии металлов (1986) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние водорода и пассивационных явлений на процессы катодного выделения металлов

Влияние галогенидов на катодное выделение водорода на железе в кислых сульфатных растворах

Влияние добавок коллоидных и поверхностно-активных веществ на катодную поляризацию при выделении металПеренапряжение водорода

Водорода катодное выделение возможные пути и стадии

Водорода катодное выделение вторичное

Водорода катодное выделение замедленная стадия

Водорода катодное выделение комбинации

Водорода катодное выделение механизм

Водорода катодное выделение на металлах платиновой группы

Водорода катодное выделение на металлах семейства желез

Водорода катодное выделение на ртути

Водорода катодное выделение свинце, цинке, кадмии и ртут

Водорода катодное выделение схема

Возможные пути катодного выделения водорода

Возможные стадии и пути протекания процесса катодного выделения водорода

Возможные стадии процесса катодного выделения водорода

Галогенид-ионы влияние на катодное выделение водорода

Ингибирование катодного выделения водорода

Ингибирование катодного выделения водорода на железе в кислых сульфатных растворах

Ингибирование катодного выделения водорода на железе в кислых хлоридных растворах

Исследование кинетики катодного процесса выделения водорода из разбавленных растворов соляной кислоты

Катодные материалы с высоким перенапряжением выделения водорода

Катодный процесс выделения водорода

Кинетика адсорбции ПАВ при ингибировании катодного выделения водорода

Кинетика катодного выделения водорода

Кинетика парциальных процессов электрохимической коррозии. Закономерности катодного выделения водорода

Металлы, анодное растворение катодного выделения водород

Н. Е. Нечаева. Катодные процессы при выделении цинка и водорода па электродах из других металлов

Некоторые закономерности катодного выделения водорода

Некоторые закономерности катодного выделения водорода . 68. Саморастворение металлов

Никель, анодное растворение катодного выделения водорода

Одновременное катодное выделение металла и водорода

Определение порядка катодного процесса выделения водорода по ионам водорода

Основные закономерности катодного выделения водорода

Особенности ингибирования катодного выделения водорода на никеле

Ток катодный

Хомутов. Энергия активация реакции электролитического выделения водорода и природа катодного материала



© 2025 chem21.info Реклама на сайте