Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тирозин, определение в воде

    Для детального изучения свойств и особенностей неорганической матрицы использовали органические соединения-примеси бензол, толуол, простейшие ароматические соединения, структурные спектры люминесценции которых в органической матрице хорошо известны фенол и анилин, имеющие электро-нодонорные группы, спектры люминесценции которых в органической матрице представляют собой широкие, практически бесструктурные полосы ароматические аминокислоты (/-фенилаланин, /-тирозин, /-триптофан), практически нерастворимые в органических растворителях, используемых в качестве матриц по методу Шпольского, и хорошо растворимые в воде. Выбор данных соединений был также обусловлен и практическими требованиями определение микроколичеств исследуемых веществ непосредственно в природных водах. [c.245]


    НОСТИ цветных реакций. Эти попытки, однако, не имели достаточного основания, поскольку окраска, получаемая с белками, как правило, слабее окраски, получаемой с соответствующими белковыми гидролизатами. Это обусловлено, по всей вероятности, тем, что в белковой молекуле некоторые реактивные группы скрыты внутри глобулы и вследствие этого недоступны действию окрашивающего реагента (см. гл. VII). Поэтому для определения аминокислотного состава белка необходимо подвергнуть его полному гидролизу. Большинство аминокислот можно определить в кислотном гидролизате, однако некоторые аминокислоты обнаруживаются только после гидролиза белка гидроокисью бария (см. выше). Разделение смеси аминокислот представляет собой трудную задачу, так как аминокислоты являются амфолитами, растворимыми в воде и нерастворимыми в таких органических растворах, как спирт. Только иминокислоты пролин и оксипролин раство римы в этиловом спирте. Ввиду того что аминокислоты обладают сходными физико-химическими свойствами, их нельзя разделить фракционированием спиртом или нейтральными солями. Некоторые аминокислоты можно, однако, отделить путем осаждения их при соответствующих условиях. Например, растворимость цистина при нейтральной реакции и тирозина при слегка кислой реакции настолько мала, что при доведении реакции среды до соответствующего значения pH они почти полностью выпадают в осадок. Другие аминокислоты можно осадить специфическими реактивами. Однако ни один из этих методов не является полностью удовлетворительным в количественном отношении, так как все соответствующие осадки до известной степени растворимы. [c.31]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]


    Основными составными частями жемчуга (и перламутра) являются кальциевые минералы — арагонит и кальцит (10—95%), органическое вещество конхиолит (4,5-85%) и вода (0,5-4,0%). Сочетание этих веществ в строго определенных структурах и наличие значительного количества органического вещества определяет легкую подверженность жемчуга различным загрязнениям и изменениям, связанным с процессами окисления и дегидратации органического компонента. Основу органического компонента составляют аминокислоты, далее следуют глицерин, тирозин, аломин, валин, серии и аспаргиновая кислота. Цвет органического вещества в жемчуге коричневый, желтоватый, розовый и т. д. Так [c.269]

    Ход определения. Вариант А (с использаванием моноэтиламина). К 100 мл прозрачной пробы (или к меньшему ее объему, дополненному до 100 мл дистиллированной водой) приливают 6 мл раствора моноэтиламина. Смесь перемешивают и точно через 2 мин добавляют к ней 2 мл раствора тирозина, после чего снова перемешивают. Точно через 10 мин измеряют оптическую [c.127]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Дистальный гистидин не создает существенных пространственных затруднений для таких малых лигандов, как вода, или лигандов типа азид-иона и кислорода, которые дают комплексы нелинейной структуры. Азид-ион располагается над метиновым мостиком порфиринового кольца и очень точно соответствует пространству между гистидиновой, фенилаланиновой и валиновой группами [211]. Однако дистальный гистидин создает весьма существенные пространственные затруднения для таких лигандов, как СО и N , которые при координации предпочитают линейную конфигурацию. Пространственное затруднение может быть преодолено путем отклонения угла Ее—С—О или Fe—С—N от 180° и (или) путем перестройки белка. По данным рентгеноструктурного анализа карбонильного комплекса мономерного гемоглобина hironomus, валентный угол Ее—С—О составляет 145 15° изолейцин Е11, который занимает в этом белке примерно то же положение, что и дистальный гистидин в гемоглобинах млекопитающих, также испытывает некоторое смещение [109]. Аномально низкие волновые числа валентного колебания связанного СО во многих гемоглобинах и миоглобинах, имеющих дистальный гистидин, но не в белках, в которых этот гистидин замещен на аргинин или тирозин, также были объяснены некоторым взаимодействием (за счет водородных связей или в силу стерических факторов) между гистидином и координированной окисью углерода [48]. Разностная фурье-карта между Ее ЮНз- и Ре" СМ -комплексами миоглобина свидетельствует о том, что система связей Ее—С—N остается линейной и что смещается спираль Е[8]. Таким образом, рентгеноструктурный анализ дает непосредственные доказательства существенных пространственных затруднений и определенной гибкости белкового окружения вокруг дистального координационного положения комплекса. Способность связывать гораздо более объемистые лиганды, [c.161]

    Ход определения. Стандартные растворы аминокислот готовят в концентрации 10 мг аминокислоты в 1 мл. Некоторые аминокислоты (тирозин, аспарагиновая кислота) в воде растворяются плохо, поэтому при их растворении добавляют по нескольку капель НС1. На листы или полосы (шириной 15—20 см) хроматографической бумаги на расстоянии 2,5—3 см микропипеткой наносят такое количество раствора каждой аминокислоты, чтобы содержание любой из них в местах нанесения бы-ло не менее 15—2Q мкг, а для триптофана, гистидина, тирозина, лизина и пролина не менее 20—30 мкг. После подсыхания пятен хроматограммы закрепляют в камере и приливают растворитель. [c.34]


    III) н-бутанол — уксусная кислота — вода (300 60 140) при трехкратном пропускании для определения цистина, цистеина, орнитина, лизина, гистидина, аргинина, аланина, пролина,тирозина, уаминомасляной кислоты, фенилаланина, лейцина и изолейцина  [c.40]

    Для определения двуокиси хлора применяют прямые методы при анализе воды [77] и сложных смесей [78], а также метод с применением кислотного хромфиолетового К [79] и другие методы [80, 81]. На реакции окисления в кислых растворах двуокисью хлора 1,10-фенантролината железа(II) основан фотометрический метод определения двуокиси хлора по уменьшению оптической плотности 1,10-фенантролината железа (II) [82]. Предложен также фотометрический метод определения двуокиси хлора с помощью тирозина [83, 84]. [c.318]

    Определение тирозина. Растворимость тирозина (XX) в воде настолько мала, что он осаждается при нейтрализации белкового гидролизата. В связи с этим его можно определить методом изотопного разведения [61]. Различные цветные реакции тирозина также широко используются для его количественного определения. Наиболее часто применяются для этой цели 1) диазореакция — красное окрашивание, образуюшееся при реакции тирозина с диазобензолсульфокислотой [115, 116] 2) реакция Миллона — красное окрашивание, появляющееся в присутствии тирозина при прибавлении раствора ртути в азотной кислоте [117] 3) синее окрашивание, появляющееся в результате восстанавливающего действия тирозина на смесь фосфорновольфрамовой и фосфорно-мшибденовой кислот [118]. При обработке иодом в слабощелочном растворе тирозин иодируется. В результате иодирования получаются дииодтирозин и тироксин [119, 120]. Подобная же реакция наблюдается при обработке иодом белков [80]. [c.41]

    Тироксин почти нерастворим в воде (при рН 4,5) и в органических растворителях, но растворяется в бутиловом спирте при отщеплении иода он дает тиронин. Тироксин устойчив в щелочной среде, однако кислотная или щелочная обработка в присутствии двухлористого олова или станнита приводит к полному разрушению его и образованию тирозина и тиронина. Синтез рацемической формы тироксина был осуществлен в 1926 г. Харинг-тоном и Барджером 227] описан также синтез /-изомера тироксина из /-тирозина [228]. Количественное определение этих трех иодпроизводных тирозина осуществляется колориметрически после предварительного разделения в бутиловом спирте [229] в настоящее время, однако, этот метод вытеснен методом хроматографии на бумаге с применением радиоизотопа иода 230, 2311. [c.133]

    Дженкинсон и Тинслей [19] идентифицировали с помощью хроматографии на бумаге состав аминокислот, гидролизат которых был получен в ходе изучения аминокислот растительного происхождения, выделенных из компоста. Десять мл гидролизата, содержавшего приблизительно 1 мг связанного азота, запаривали досуха при пониженном давлении, растворяли в 5 мл воды и снова упаривали досуха. Остаток растворяли в 1,5 мл воды и центрифугировали. Осветвленную жидкость в количестве 0,04 мл наносили на бумагу Ватман № 1. Разделение проводили элюентом, предложенным Вольфом [20]. Хроматограмму проявляли, окуная лист в 0,2%-ный раствор нингидрина в ацетоне. Были идентифицированы следующие аминокислоты цистеиновая, аспарагиновая, глутаминовая, лизин, аргинин, глицин, гистидин, серии, аланин, тирозин, пролин, валин, треонин, изолейцин, лейцин и фенилаланин. Метионин не поддавался определению, поскольку его трудно было отделить от глицина в описанных системах растворителей. Метио-нин-5-оксид тоже не отделялся от валина. Хроматограммы опускали в 0,1%-ный раствор изатина в ацетоне для обнаружения про-лина и подтверждения отсутствия оксипролина. Детектирование и определение содержания пептида с остатком лизина в середине цепи проводили с помощью 2,4-динитрофторбензола [21]. Эта реакция протекает, поскольку е-аминогруппа, в отличие от а-амино-группы лизина, свободна и может вступать в реакцию. [c.306]

    Гидролизат, содержащий метионин и цистин, предварительно окисляют надмуравьиной кислотой. На линию старта одномерной хроматограммы наносят 80—100 цг смеси в виде поперечной линии длиной 13 мм, на остальные места наносят стандартную смесь аминокислот, аналогичную по своему составу испытуемой смеси кроме того, наносят каплю тропеолина 00. Первое хроматографирование в системе / -бутанол — уксусная кислота — вода (4 1 5) проводят с перетеканием до тех пор, пока пятно тропеолина достигнет нижнего края бумаги. После сушки хроматограмму хроматографируют в той же системе, повторяя эту операцию 5—8 раз, причем каждый раз до достижения растворителем нижнего края бумаги. Проявление проводят погружением хроматограммы в 0,7%-ный раствор нингидрина в безводном ацетоне, после чего хроматограмму выдерживают в течение 8—10 час при комнатной темнературе в полутьме, нричем в атмосфере не должно содержаться аммиака. Затем хроматограмму освещают минимум двумя источниками света с определенного расстояния и фотографируют на фотопленку. Отношение величины площадей пиков анализируемых образцов, полученных измерением на микрофотометре, сравнивают с площадями стандартных образцов и результаты выражают в виде части от общего содержания аминокислот. Метионинсульфон (располагающийся на хроматограммах вместе с гликоколом и серином), тирозин и триптофан этим способом пе определяются, изолейцин и лейцин определяются совместно. [c.776]

    Степень интенсивности синего окрашивания определяют с помощью фотоэлектроколорнМетра. Для этого в кювету толщиной 5 мм вводят исследуемый раствор определение ведут с красным светофильтром прн длине волны 650 нм прн определении оптической плотности исследуемого раствора контролем является вода. По данны,м. оптической плотности и стандартной кривой, построенной с нриме-11ением химически чистого препарата тирозина, вычисляют содержание тирозина в исследуемом образце [c.189]

    Маркс [123] дал обзор 14 химических методов для определения остаточного хлора в воде и сточных водах. Многие из этих методов либо простые колориметрические (например, для плавательных бассейнов), либо методы, основанные на спектрофотометр рии с использованием хромофорных агентов [118]. Примерами таких агентов являются сирингалдазин, тирозин и Ы,М-днэтил-/г-фенилендиамин (для СЮг и хлорита). [c.621]


Смотреть страницы где упоминается термин Тирозин, определение в воде: [c.112]    [c.398]    [c.398]    [c.125]    [c.125]    [c.128]    [c.129]    [c.70]    [c.232]    [c.210]    [c.264]    [c.58]    [c.506]    [c.346]    [c.228]    [c.9]    [c.190]   
Химия промышленных сточных вод (1983) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Тирозин

Тирозин тирозин



© 2024 chem21.info Реклама на сайте