Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ кристаллической структуры

    Высокие значения сопротивления разрыву ненаполненных смесей пропиленоксидного каучука указывают на наличие или образование при растяжении кристаллической структуры. Струнский с помощью рентгеноструктурного анализа показал, что сополимеры СКПО, полученные в различных условиях, содержат до 20% кристаллической фазы. Следует также отметить, что вулканизаты характеризуются низкой остаточной деформацией при испытаниях на сжатие. [c.578]


    Составление алгоритма и последующая разработка программного обеспечения для обработки набора данных (приведенного в левой части рис. 9.1) в целях получения образа, показанного в правой части этого рисунка, не представляют собой большой проблемы. В самом деле, тип исследуемой обработки данных положен в основу многих кристаллографических программ, предназначенных для рентгеноструктурного анализа кристаллической структуры [1—3]. [c.368]

    Приведенное на рис. 2.4 изображение молекулы является одним из способов демонстрации структуры цепи. При таком способе изображения хорошо видна геометрия цепи, т. е. длина связей и углы между связями, однако занимаемый макромолекулой объем трудно себе представить. Модель, в которой атомы представлены в виде несжимаемых сфер (или частей сфер), более наглядна. Значения радиусов атомных сфер любого типа атомов определяют методом рентгеноструктурного анализа кристаллических структур, оценив расстояния ме- [c.36]

    Полииодиды Ц (л = 5, 7 и 9) отличаются от смешанных полигалогенидов тем, что их можно описать как более или менее прочные соединения иона с двумя, тремя или четырьмя молекулами 1г, причем связь в таких соединениях по характеру близка к взаимодействию иона с наведенным диполем. Рентгеноструктурный анализ кристаллической структуры пентаиодида тетраметиламмония [c.332]

    Описание аппаратуры для рентгеноструктурного анализа и техника экспериментальной работы описана в [313—315]. Рентгеноструктурный анализ дает возможность оценить в асфальтенах степень кристалличности, структуру кристаллических областей, размеры кристаллита. Однако в асфальтенах преобладают аморфные области. Поэтому на рентгенограммах, наряду с узкими кристаллическими рефлексами появляются широкие гало, характерные для дифракции на аморфных неупорядоченных структурах. Сравнивая интенсивность рефлексов и гало, можно судить о степени кристалличности образца. Однако на практике трудно разделить кривую распределения интенсивности на две части, так как основания пиков широки и перекрывают друг друга. Кроме того, часть дифракции на кристаллитах представляет собой диффузный фон, трудно отличимый от аморфного гало, которое может быть весьма широким. [c.154]

    Для большинства неорганических кристаллических веществ характерно полимерное строение Молекулярные решетки встречаются чрезвычайно редко, что было установлено уже в первых рентгеноструктурных исследованиях. Тогда же было показано, что координационное число элементов кристаллической решетки, как правило, больше числа его обычной валентности (степени окисления), что позволяет рассматривать неорганические полимерные соединения как комплексные. Комплексные составляющие таких неорганических полимеров можно условно выделить на основании анализа кристаллической структуры. [c.671]


    В целом, по совокупности всех параметров, рентгеноструктурный анализ имеет ряд несомненных и существенных преимуществ перед двумя другими дифракционными методами анализа кристаллической структуры. [c.173]

    Вирус мозаичной болезни табака в листьях растения находится в виде кристаллического образования. Кристаллическая природа его доказана с помощью рентгеноструктурного анализа. Кристаллические вирусы очень быстро размножаются. За четыре недели количество введенного в растительный организм вируса увеличивается в миллион раз. Какие-то химические процессы синтеза влекут за собой беспрерывную мобилизацию аминокислот, нуклеиновых кислот, углеводов и липоидов из протоплазмы живой клетки на образование кристаллического вируса. Этот процесс напоминает кристаллизацию из насыщенных растворов, но в листьях растения отсутствуют даже ощутимые для анализа количества этих веществ. Такой тип воспроизводства кристаллической структуры возможен только в живой клетке. Искусственная питательная среда или же растертые свежие ткани растения-хозяина неспособны поддерживать воспроизводство кристаллического вируса. [c.255]

    Представление Мюллера /ъ] о модифицированном карбене как об "обращенном илиде" П1, в котором углеродный атом заряжен положительно, а медь - отрицательно, в последнее время получает поддержку при изучении стабильных комплексов карбенов с металлами /81-8з/. Рентгеноструктурный анализ кристаллических комплексов / з/ согласуется с формулой, передаваемой наложением предельных структур XX  [c.97]

    Данные о гидродинамических свойствах белков в растворе и оценка размеров элементарной ячейки, полученная с помощью рентгеноструктурного анализа кристаллических белков, свидетельствуют о компактности и жесткости белковой молекулы. Эти свойства белка нельзя объяснить одной лишь вторичной спиральной структурой, даже если принять во внимание наличие дисульфидных связей и остатков пролина. Легкость, с которой эта компактность может быть нарушена, свидетельствует вместе с тем о том, что структура стабилизирована не ковалентными связями. Стабилизация плотно свернутой третичной структуры глобулярных белков достигается за счет взаимодействия боковых цепей аминокислотных остатков, обладающих указанными выше химическими свойствами. Силы взаимодействия каждая в отдельности не велики ионное взаимодействие, водородные связи, гидрофобное взаимодействие и вандерваальсовы силы. Но поскольку число этих слабых связей очень велико и все они действуют одновременно по всей свернутой структуре белка, она обладает достаточной устойчивостью при обычной температуре. Оценить относительное значение связей различного типа в поддержании третичной структуры очень трудно и на этот счет еще нет единого мнения. [c.26]

    Основной экспериментальный материал для анализа кристаллической структуры дают дифрагируемые кристаллом лучи. Интенсивности отражений после учета ряда побочных факторов превращаются в абсолютные значения (модули) амплитуд. Однако вторая важнейшая характеристика дифракционного эффекта — значения начальных фаз волн — непосредственно экспериментом не дается. Это обстоятельство и составляет главную трудность рентгеноструктурного анализа, препятствующую прямому подходу к определению строения кристалла. В частности, оказывается несостоятельной попытка определения координат атомов путем решения системы уравнений типа [c.180]

    В первую очередь рассмотрим адсорбцию на ЫаХ моле- кул различной химической природы и структуры. Для этого цеолита по рентгеноструктурному анализу, при пересчете на чистую кристаллическую форму, объем ячеек больших полостей составляет = 0,322 см /г. Примерно такое значение, практически не отличающееся от вышеприведенного, указано у различных авторов. [c.28]

    Термическое рафинирование до температур начала заметной сублимации углерода обеспечивает не только удаление зольных примесей, что уменьшает толщину чешуек, но и упорядочение кристаллической структуры графита и его текстурирование. Об этом свидетельствуют данные рентгеноструктурного анализа и электронно-микроскопические исследования [В-4, 6-143]. [c.367]

    Авторами разработан комплекс методик рентгеноструктурного анализа и выполнены исследования различных видов нефтяных коксов с оценкой тонкой кристаллической структуры, структуры надмолекулярной организации коксов, взаимосвязи получаемых рентгеноструктурных характеристик с эксплуатационными характеристиками промежуточных и конечных углеродных материалов. При разработке методик исследовано большое количество промышленных коксов разной структурной организации, проведено сопоставление рентгеноструктурных характеристик с данными других методов, исполь-зуемых при оценке качества коксов. В данной обзорной статье, для [c.117]

    Между молекулярной структурой нефтяного сырья и кристаллической структурой изготовленной из него углеродной продукции существует четкая связь, что позволяет управлять процессами производства нефтяного углерода и его облагораживания. Кристаллит-ную структуру нефтяного углерода определяют методами рентгеноструктурного анализа, электронно-парамагнитного резонанса и др. [c.148]


    Изучение методами рентгеноструктурного анализа с позиций мезоморфных превращений структуры среднетемпературного и высокотемпературного пеков показало, что в них уже сформировалась кристаллическая фаза в аморфной матрице, но во втором пеке ее примерно в два раза больше, хотя размеры кристаллитов близки. Но при нагреве параметры фазового состава и структуры кристаллической фазы у высокотемпературного пека начинают изменяться только выще 340 С, а аморфная фаза переходит в кристаллическую с меньшим разрыхлением структуры. Наблюдаются различия в именении малоугловой картины в пеках, но можно констатировать, что в высокотемпературном пеке надмолекулярное упорядочение протекает более плавно. В каменноугольных пеках, также как и в нефтяных, прослеживается единая взаимосвязь между средними размерами кристаллитов и относительной долью кристаллической фазы, хотя коэффициенты отличаются от нефтяных пеков  [c.188]

    Изучены указанные вопросы для процессов электроосаждения из трилонатных растворов сурьмы, сплавов 8Ь - В1, - 1п, Си - 31, Ni - В1, Со - В1, Си - N1, Си - Со, В1. Установлено, что фазовый состав электро-осажденных сплавов зависит от потенциала осаждения и химического состава сплавов присутствие в растворе протонированных трилонатных комплексных частиц и гидроксокомплексов металлов снижает качество и выход по току сплавов в нестационарных условиях электроосаждения формируются сплавы с высокой степенью дефектности, причем структурные искажения кристаллических решеток носят деформационный характер твердость и коррозионная стойкость зависят от химического состава сплава. Методом рентгеноструктурного анализа установлена структура и фазовый состав изученных гальванических покрытий. [c.22]

    Строение и фирические свойства. Аморфный GeS — вещество красного или темно-красного цвета, кристаллический —темносерый, в проходящем свете окраска изменяется от красной до желтовато-красной. По данным рентгеноструктурною анализа, кристаллическая структура 2-GeS (рис. П) акатогична структуре ге ценбе-рита. Моносульфид кристаллизуется в ромбической синг онии параметры ячейки а = 4,29 0,01 A 6 = 10,42 0,03 А с = [c.158]

    Стабильная активность образцов с разными соотношениями ЗЮг/ЛЬОз, но не содержащих катионов натрия, практически не отличается друг от друга, лишь на образце с соотношением 5102/А120з=9,2 наблюдается несколько повышенное значение ц (табл. 9). Из сопостав-лениа этих результатов с полученными данными по активности образцов с меньшей степенью декатионирования (80—85%), для которых четко отмечалось влияние соотношения ЗЮг/АЬОз на активность, следует, что это различие обусловлено остаточным содержанием катионов натрия и зависит от соотношения 5102/А120з, по-разному влияющего на стабильность структуры цеолитов и их активность. Как показали данные рентгеноструктурного анализа, кристаллическая структура полностью декатионированных образцов (4—7) в отличие от частично-дека-тионированных цеолитов подвергается разрушению уже в ходе работы при одновременном сохранении высокой и стабильной активности — факт сам по себе очень интересный. Поскольку стабильная активность этих цеолитов значительно превосходит активность аморфного алюмосиликата (примерно на порядок), следует предположить, [c.51]

    Отмечено, что при полимеризации кристаллических триоксана, р-пропиолактона, дикетена, 3,3-бисхлорметилоксетана образуются кристаллические полимеры [5, 10]. Степень кристалличности полимера особенно возрастает, когда полимеризации подвергают мономер в виде монокристалла. Триоксан и его полимер — полиокси-метилен — обладают почти одинаковой плотностью и, по данным рентгеноструктурного анализа, кристаллическая структура мономера почти полностью сохраняется в полимере. Следует отметить, что радиационный полимер из триоксана имеет более высокую температуру плавления и более термостабилен, нежели полимер из формальдегида [6]. [c.92]

    Для выявления кинетических закономерностей, которые не осложнены вторичными реакциями, а также диффузионными процессами, обычно исследования проводили при малых скоростях реакции (низких температурах), низких давлениях или, по возможности, учитывали другие усложняющие факторы. На основании большого количества работ, выполненных в достаточно чистых условиях, установлено, что значение энергии активации для реакции С-ьО находится в пределах 218— 243 кДж/моль, С + Oj — от 197 до 406 кДж/моль и для реакции С + Н2О - 230-348 кДж/моль [65]. Такие значительные расхождения могут быть объяснены тем, что в рассмотренных работах применяли углеродные материалы, отличающиеся кристаллической структурой. Проведенное в работе [68] сопоставление величины энергии активации с параметром кристаллической структуры, в качестве которого было взято отношение размера кристаллита по оси а Lg (полученное из данных рентгеноструктурного анализа) для структуры с высокой степенью упорядоченности, к Lg для исследуемого материала, привело к выражению для зависимости энергии активации Е = Eq — к п LglLg, где Ео — энергия активации для структуры с высокой степенью совершенства, кДж/моль - энергия активации для изучаемого образца, кДж/моль. [c.118]

    Четырехцентровые связи удерживают вместе и мономеры в гексамерах, что было показано рентгеноструктурным анализом кристаллического комплекса циклогексилллитий бензол, 6 2. Соединение представляет собой структуру с ядром, содержащим искривленный октаэдр из атомов металла. Предполагаемая структура гексамера бутиллития представлена на рис, 4,3, [c.223]

    Кристаллическая структура поликарбоната на основе бисфенола А впервые была изучена с помощью рентгенографического анализа [4]. Были определены параметры кристаллической решетки и плотность кристаллов. Однако позднее было установлено, что предложенная структура кристаллов противоречит данным ИК-спектроскопии и более детального рентгеноструктурного анализа поликарбоната [9]. Подробный анализ кристаллической структуры поликарбоната на основе бисфенола А содержится в монографии Шнелла [10, с. 150—151]. [c.107]

    ЦИИ порядка 1000 остатков глюкозы средневесовая степень полимеризации может достигать 4000. Рентгеноструктурный анализ кристаллических комплексов амилозы с некоторыми спиртами указывает на спиральную конформацию полимерной молекулы аналогичную структуру образует амилоза и в случае комплекса с иодом, причем каждый виток спирали состоит из шести глюкозных остатков . Молекулы иода или другого комплексообразующего агента располагаются вдоль центральной оси спирали. [c.534]

    Карбамид МНгСОННг, по данным рентгеноструктурного анализа, может существовать в двух кристаллических модификациях тетрагональной и гексагональной. Чистый карбамид имеет тетра-гональнук> структуру, каждая кристаллическая ячейка которой состоит из четырех молекул. Это плотно упакованный кристалл не имеющий свободных пространств, в которых могли бы размес титься молекулы другого вещества. В процессе комплексообразо вания происходит перестройка кристаллической структуры карб амида из тетрагональной в гексагональную. В этом случае кри сталлическая ячейка состоит из. тести молекул карбамида расположенных по спирали и повернутых друг относительно дру га под углом 120°. При таком построении между молекулами карбамида образуется свободное пространство (канал), в котором размещаются молекулы другого вещества. Диаметр канала в узкой части составляет 4,9 А, а в широкой — около 6А, поэтому комплекс с карбамидом могут образовывать те вещества, молекулы которых имеют диаметр поперечного сечения меньше диаметра канала. Из компонентов, содержащихся в нефтяном сырье, только молекулы н-алканов имеют поперечный размер (3,8Х4,2 А) меньше диаметра канала в гексагональной ячейке карбамида. Поэтому необходимым структурным элементом молекул веществ, определяющим их способность образовывать комплекс с карбамидом, является наличие длинной парафиновой цепи нормального строения. [c.210]

    Главным методом, с помощью которого в настоящее время определяется третичная структура белка, является рентгеноструктурный анализ кристаллических образцов. Для рентгеноструктурного анализа необходимо получение монокристаллов белков. Проблема кристаллизации часто оказывается весьма сложной и требует не только соответствующего методического арсенала, но и высокого экспериментального искусства, а порой и просто везения. Для анализа кристаллов относительно простых соединений можно пользоваться так называемыми прямыми методами. В большинстве случаев оказывается необходимо ввести в молекулу белка тяжелый атом (например, атом ртути), причем так, Зтобы пространственная структура белка суш ественно не искажалась — это известная проблема изоморфного замещения. Кристалл изоморфного производного белка и служит основным объектом исследования. [c.99]

    Хорошо известно, что синтез поливинилметилового эфира и его гомологов может быть проведен в присутствии катионных инициаторов типа ВРз- (С2Н5)20 с образованием (в зависимости от условий реакции) мягких каучукоподобных или жестких кристаллических продуктов. Ранее было установлено, что эти различия связаны со стереохимией цепи при этом, судя по данным рентгеноструктурного анализа, кристаллический полимер имеет преимущественно изотактическую конфигурацию [46, 47]. Позднее в присутствии инициаторов Циглера [48] были получены стереорегулярные полимеры. Исследования с помощью ЯМР-спектроскопии подтвердили ранее сделанные выводы относительно изомерных форм этих полимеров. Браунштейн и Вайле [45] нашли, что в спектрах кристаллических полимеров наибольшую интенсивность имеет пик метоксильных протонов /пт-триад каучукоподобные материалы имеют менее регулярную структуру, но /ит-триады преобладают в некоторой степени во всех изученных полимерах. [c.110]

    Рентгеноструктурный анализ кристаллических полимеров в принципе может давать сведения о координатах атомов в элементарной ячейке, однако, ввиду не очень совершенного порядка число отражений мало и прямые решения структурной задачи невозможны [19]. Рентгенограммы растянутого образца дают информацию о периоде идентичности (с) вдоль оси волокон. Чтобы получить другие параме.тры спирали — трансляцию вдоль оси при переходе от одной эквивалентной мономерной к следующей (с1) и угол поворота в плоскости, перпендикулярной оси спирали (0 = 2ят/тг), обычно действуют методом проб и ошибок, т. е. делают некоторые предположения относительно симметрии спирали, или (что то же) относительно числа мономерных звеньев в витке. Например, предполагаю , чго спираль имеет симметрию 3[ (т. с. 3 мо номерных единицы в одном витке — п/т = 3), 4ь 7г и т. д. Некоторые типы симметрии спиралей приведены на рис. 2. Далее для выбранного типа симметрии рассчитывают теоретическое распределение интенсивности и сравнивают его с наблюдаемым. Теория рассеяния рентгеновских лучей на спиралях была разработана Кокреном, Криком и Вандом [20] в связи с интерпретацией рентгенограмм спиральных полипептидов и в дальнейшем использовалась для предсказания структуры ДНК, регулярных полимеров и т. д. (см. также [19]). [c.10]

    Такой субстрат бьш найден для лизоцима, гидролизующего определенные связи в цепях бактериальных полисахаридов. На рис. 1 показана (в масштабе) предполагаемая структура нормального фермент-субстратного комплекса для лизоцима. Это изображение бьшо получено. на основе данных рентгеноструктурного анализа кристаллического комплекса лизоцима и ложного , т. е. негидролизуемого, субстрата, представляющего собой аналог обьиного субстрата лизоцима. Эти исследования бьши проведены Дэвидом К. Филлипсом и его сотрудника- [c.250]

    Специфичность, которую проявляет фермент в отношении субстрата как при образовании комплекса, так и при каталитическом химическом превращении, обусловлена существованием на поверхности фермента специфического участка. Этот участок фермента называется его активным центром. Исходя из размера молекулы субстрата, которая узнается активным центром, например молекулы лактозы, можно подсчитать, что активный центр соответствует участку примерно в400А . Таким образом, активный центр составляет лишь небольшую часть всей поверхности фермента. Многие ферменты, особенно те, которые состоят из одной лишь полипептидной цепи, обладают только одним активным центром. Однако молекула р-галактозидазы имеет четыре активных центра — по одному на каждую из четырех идентичных полипептидных цепей, участвующих в образовании ее четвертичной структуры. Подробная молекулярная картина активного центра была получена впервые в 1964 г., когда был проведен рентгеноструктурный анализ третичной структуры кристаллического фермент-субстратного комплекса. Полученные результаты показали, что субстрат располагается в небольшом углублении на поверхности фермента и окружен примерно 20 аминокислотами полипептидной цепи. Именно эта группа аминокислот и входит в состав активного центра, а боковые цепи этих аминокислот образуют с субстратом слабые химические связи. Сродство фермента к субстрату отражает образование этих связей. Следует, однако, отметить, что аминокислоты, составляющие активный центр, расположены на полипептидной цепи отнюдь не рядом. Наоборот, они очень отдалены друг от друга в первичной структуре и сближаются только в результате образующих третичную структуру искривлений полипептидной цепи. Таким образом, наличие активного центра —это следствие трехмерной конформации фермента. Специфическое узнавание субстрата активным центром обусловлено природой и точным пространственным положением боковых цепей, составляющих активный центр аминокислот. Аминокислоты, входящие в состав активного центра, образуют приемник , форма которого хорошо приспособлена к идеальному субстрату и обеспечивает возможность образования слабых химических связей между ферментом и субстратом.  [c.105]

    Влияние температуры. На основании исследований, проведенных во ВНИИполимер о зависимости структуры полимеров хлоропрена от температуры путем определения молекулярномассового распределения полимеров (методами ИКС и ЯМР), содержания кристаллической и аморфной фаз (методом рентгеноструктурного анализа) было установлено, что с повышением температуры полимеризации происходит снижение регулярности структуры полимеров и уменьшение их средней молекулярной массы. Одновременно с повышением температуры полимеризации уменьшается скорость кристаллизации (рис. 1). При пониженных температурах полимеризации, тенденция к кристаллизации сохраняется в вулканизатах, вызывая увеличение их твердости и уменьшение эластичности [18]. На основании данных о влиянии температуры на свойства полимеров хлоропрена была принята в качестве оптимальной температура полимеризации 40°С. [c.372]

    Кроме того, значительные межмолекулярные взаимодействия в перфторированном аналоге этилен-пропиленового каучука делают фторированный сополимер жестким пластиком. Рентгеноструктурный анализ сополимера, содержащего 107о гексафторпропилена, показал, что при этом не нарушается кристаллическая структура и сополимер не приобретает пласто-эластических свойств. Высокая температура стеклования полигексафторпропилена [c.502]

    Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]

    Сдвиг атомов каждого последующего параллельного слоя происходит по осям X п Y таким образом, что атомы каждого третьего слоя находятся под атомами каждого первого. Таким образом, если первый слой решетки обозначить А, второй В, то распределение слоев в кристалле описывается как АВ АВ. ....Вектор переноса атомов углерода равен 0,1418 нм и соответствует трансляции решетки, обозначаемой знаками V - Весь кристалл графита описывается в виде уЛ у Д- Расстояние между совпадающими по расположению атомов слоями равно 0,6708 нм. В натуральном и искусственном графитах обнаруживается другая кристаллическая модификация — ромбоэдрическая (рис. 1-5, б) [1-2]. Параметры ее решетки а = 0,246 нм и с = 0,335 X 3 = 1,005 нм. В этой модификации, обозначаемой как AB AB . ... или S7 S/AAA, величина трансляции Л и V равна 0,4118 нм. Ромбоэдрическая модификация появляется в хорошо кристаллизованном натуральном графите, подвергнутом механическим воздействиям, например помолу. Его образование связано с относительно большими деформациями сдвига [1-3]. При таких деформациях в гексагональном графите могут наблюдаться фазовые вкрапления ромбоэдрического гра( )ита на протяжении примерно десяти последовательно располагающихся слоев. Его содержание в зависимости от ряда условий находится в пределах 5-22% (объем). В монокристаллах гексагонального графита методом микродифракции электронов обнаруживается около 5% ромбоэдрического графита. В кристаллах мозаичной структуры также можно предполагать присутствие его небольших количеств, неразрешаемых рентгеноструктурным анализом. Указанная модификация соответствует метастабильному состоянию и полностью исчезает при нагреве до 3000 С. [c.23]

    Фторирование углеродных волокон из полиакрилонитрильного (ПАН) волокна [6-163,178]. Исследования показали, что фторирование поверхности волокна, полученного при 1200-2100 С, вызывает привес 8-10% (масс.) и приводит к росту его плотности, модуля упругости и предела прочности при растяжении. Увеличение прочности при фторировании поверхности связано с дефторированием неупорядоченной части волокна. По данным рентгеноструктурного анализа, текстура углеродных волокон не изменяется до содержания фтора 17% (масс.). После достижения содержания фтора 20-27% (масс.) и до 54-56% (масс.) фтора наблюдается резкий переход от фибриллярной структуры углеродной матрицы к слоистой кристаллической структуре полимонофторида углерода. [c.400]

    Фторирование активированных углеролиых волокон [6-153]. Активация углеродных волокон, предшествующая фторированию, позволяет резко снизить температуру фторирования. Уже при комнатной температуре достигается отношение F/ в интервале от 0,68 до 0,72, а при 200 С от 1,22 до 1,28. При этой температуре, по данным рентгеноструктурного анализа, образуется трехмерная кристаллическая структура ( F ) . Часть углерода выше 150 С удаляется в виде летучих F4 или [c.402]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]


Смотреть страницы где упоминается термин Рентгеноструктурный анализ кристаллической структуры: [c.177]    [c.47]    [c.87]    [c.87]    [c.43]    [c.628]    [c.253]    [c.21]    [c.171]    [c.376]    [c.23]   
Компьютеры в аналитической химии (1987) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ кристаллических структур

Анализ рентгеноструктурный

Кристаллическая структура



© 2025 chem21.info Реклама на сайте