Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация и дегидратация органических соединений

    Воздействие серной кислоты на органические соединения чрезвычайно многообразно. Лучшим примером этого являются классические работы А. М. Бутлерова с изобутиленом он получал изобутилен дегидратацией изобутилового спирта при действие серной кислоты полимеризация изобутилена проводилась им в присутствии серной кислоты. Наконец, из изобутилена гидратацией п и действии серной кислоты можно вновь получить изобутиловый спирт. Широко известно открытое В. В. Марков-никовым применение серной кислоты при этерификации. Следует упомянуть о многочисленных конденсациях, проводимых с помощью серной кислоты. Нередко серная кислота окисляет, осмо-ляет и аже полностью обугливает органическое соединение. И только в том случае, когда органическое соединение оказывается не склонным к реакциям полимеризации, гидратации, дегидратации и окисления, становится возможным выделить продукты сульфирования. Типичными в этом отношении являются ароматические соединения, сульфокислоты которых легко получаются при действии обычных сульфирующих средств. [c.247]


    ИЗУЧЕНИЕ ПРОЦЕССОВ ГИДРАТАЦИИ И ДЕГИДРАТАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.261]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.157]

    Гидратация и дегидратация органических соединений [c.285]

    Процессы гидролиза, гидратации, дегидратации, этерификации и амидирования имеют очень важное значение в промышленности основного органического и нефтехимического синтеза. Гидролизом жиров, целлюлозы и углеводов давно получают мыло, глицерин, этанол и другие ценные продукты. В области органического синтеза рассматриваемые процессы используют главным образом для производства спиртов Сг—С , фенолов, простых эфиров, а-оксидов, многих ненасыщенных соединений, карбоновых кислот и их производных (сложных эфиров, ангидридов, нитрилов, амидов) и других соединений. [c.159]

    Сырьем для их получения служат водород, окись углерода, метан и его гомологи, этилен, пропилен, н-бутилен, изобутилен, ацетилен, бензол, толуол, нафталин и др., получаемые при переработке жидкого, твердого и газообразного топлив. В производстве синтетических органических продуктов используются процессы окисления и восстановления, гидрирования и дегидрирования, гидратации и дегидратации, сульфирования, нитрования, галоидирования и др. На их основе осуществляется синтез самых различных соединений, служащих сырьем для получения полимеров, синтетических красителей, ядохимикатов, смазочных, моющих, душистых и лекарственных веществ и т. д. Большинство органических процессов протекает в присутствии катализаторов. [c.320]

    Вместе с тем реакции гидратации и дегидратации органических соединений занимают очень важное место в катализе и совершенно особое положение в истории катализа. [c.261]

    Работы А. М. Бутлерова (1828—1886) в области полимеризации, изомеризации и гидратации органических непредельных соединений послужили основой для создания многих новых методов органического синтеза. В 1867 г. им был получен синтетический изобутилен путем дегидратации третичного бутилового спирта (триметилкарбинола) при обработке последнего серной кислотой. В 1873 г. А. М. Бутлеров показал, что изобутилен в присутствии серной кислоты способен полпмеризоваться. Это открытие является основой современных способов выделения изобутилена из газов срекинга и пиролиза нефти. В 1877 г. им же был применен в качестве катализатора фтористый бор для полимеризации пропилена. Этот катализатор в настоящее время применяется для полимеризации изобутилена в производстве полиизобутиленов (оппанол в Германии и вистанекс в США), а также при получении синтетического изобутилен-изопренового каучука (бутилкаучук в США). [c.15]


    Предлагаемая вниманию читателей новая книга В. И. Кузнецова содержит подробный историко-критический анализ развития исследований каталитических процессов гидрогенизации, дегидрогенизации, гидратации и дегидратации, окисления, гало-генирования и нитрования органических соединений. Она является своего рода продолжением уже опубликованных работ этого же автора , в которых нашли освещение такие разделы органической химии, как полимеризация, изомеризация и крекинг. [c.3]

    Активную окись алюминия применяют в качестве катализатора в процессах гидратации и дегидратации газообразных органических соединений, а также как носитель различных контактов и осушитель минеральных масел и газов. [c.295]

    Для гидролиза органических соединений, а также для реакций гидратации, дегидратации и этерификации типично каталитическое влияние кислот. Из рассмотренных ранее процессов только превращения хлорпроизводных не чувствительны к этим катализаторам. Влияние кислот обусловлено активированием органической молекулы за счет присоединения протона, в результате чего она становится способной к взаимодействию даже с такими слабыми реагентами, как вода и спирты  [c.206]

    В концентрированных растворах серной кислоты изменяются условия гидратации альдегидных групп некоторых органических соединений (например, глиоксалевой кислоты [24], пиридинальдегидов [25]), поэтому в отличие от водной среды, где на предельные токи этих веществ влияет скорость дегидратации, в этих условиях предельные токи определяются только скоростью диффузии. В концентрированной серной кислоте (и в других сильных кислотах) можно полярографически изучать поведение и реакции таких ионов, как N0 + и N0+ [26]. [c.440]

    К кислотно-основным, или ионным, каталитическим процессам относятся процессы каталитического крекинга нефти, гидратации и дегидратации спиртов, конденсации углеводородов, изомеризации и полимеризации органических соединений. Здесь электронные свойства катализаторов сушественного значения не имеют. Однако большое значение приобретает способность катализаторов передавать ионы водорода — протоны — молекулам реагирующих веществ. [c.367]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    Научные работы относятся к химической кинетике н органическому катализу. Исследовал химию фосфора и его соединений. Изуча.л (193 0—1940) термодинамику и кинетику реакций каталитического превращения углеводородов с целью совершенствования промышленных методов переработки нефти. Установил количественные закономерности, связывающие константы скорости реакций с параметрами, характеризующими катя-лизатор, термодинамическими условиями и макрокинетическими факторами. Рассчитал условия равновесия реакций гидрирования и дегидрирования, гидратации олефинов и дегидратации спиртов, синтеза метана. Вывел кинетическое уравнение для каталитических )еакций в струе. Исследовал связь каталитической активности алюмосиликатных катализаторов с их составом, способом приготовления, кристаллической структурой. Разрабатывал статистические методы расчета термодинамических величин. [211, 290] [c.532]

    Оценку изменения уровня окисления органического соединения в ходе того или иного превращения проще всего сделать, если проследить за изменением уровня окисления соответствующего реагента. Так, например, образование спиртов в результате гидратации алкенов, равно как и обратная реакция дегидратации безусловно относятся к категории изогипсических превращений, поскольку в них участвует вода, не играющая здесь роли окислителя или восстановителя. Напротив, любые варианты гидроксилиро-вания алкенов, ведущие к образованию 1,2-гликолей, описываются как формальное присоединение пероксида водорода, несомненного окислителя, и потому должны бьггь отнесены к разряду неизогипсических, окислительных реакций. Также неизогипсическими являются такие реакции, как присоединение водорода (восстановитель ) или брома (окислитель ) по [c.134]

    Катализ применяется при получении важнейших неорганиче ских продуктов основной химической промышленности водорода аммиака, серной и азотной кислот. Особенно велико и разнооб разно применение катализа в технологии органических веществ прежде всего в органическом синтезе — в процессах окисления гидрирования, дегидрирования, гидратации, дегидратации и дру гих. При помощи катализаторов получают основные полупродукты для синтеза высокополимеров синтетического каучука (бутадиен стирол, изобутилен), пластических масс (метанол, формальдегид фталевый ангидрид), а также полупродукты для синтеза красите лей, ядохимикатов и других химических продуктов. Непосредст венное получение высокомолекулярных соединений полимериза цией и поликонденсацией мономеров также осуществляется с уча стием катализаторов. [c.230]


    Действительно, в этих отраслях химической промыщленности реализуются практически все важнейщие типы превращений органических веществ крекинг, изомеризация, гидрирование и дегидрирование, гидратация и дегидратация, галогенирование, гидро-галогенирование, окисление, этерификация и др. Особое место занимают процессы полимеризации и поликонденсации, являющиеся прерогативой промыщленности высокомолекулярных соединений, в частности промышленности синтетических каучуков. Оборудование, применяемое для осуществления этих процессов, рассмотрено в гл. IV. [c.68]

    Исследования в области гидратации и дегидратации органических соединений не так миогочислевны, как в области гидро-и дегидрогенизации. Это объясняется, может быть, спецификой гомогенного катализа, к которому относится значительная часть данных реакций, а также тем, что гидратация и дегидратация протекают при сравнительно небольшом количестве катализаторов. [c.261]

    Процессы гидролиза, гидратации, дегидратации, этерификации и амидирования имеют очень важное значение в промышленности основного органического и нефтехимического синтеза. Гидролизом жиров, целлюлозы и углеводов давно получают мыло, глицерин, этиловый спирт и другие ценные продукты. В области органического синтеза рассматриваемые процессы используются главным образом для производства спиртов Сг—С5, фенолов, простых эфиров, а-окисей, многих ненасыщенных соединений, карбоновых кислот и их производных (сложных эфиров, ангидридов, нитрилов, амидов), а также ацетальдегида и других,соединений. Перечисленные вещества имеют очень важное применение в качестве промежуточных продуктов органического синтеза (спирты, кислоты и их производные, альдегиды, а-окиси и др.), мономеров и исходных веществ для синтеза полимерных материалов (фенол, эфиры акриловой и метакриловой кислот, меламин, хлоролефины, акри-лонитр11л и др.), пластификаторов и смазочных материалов (сложные эфиры), растворителей (спирты, простые и сложные эфиры, хлоролефины), пестицидов (эфиры карбаминовой и тиокарбами-новой кислот), поверхностно-активных веществ (соли моноэфиров серной кислоты) и т. д. [c.204]

    Хорошо известно, что классический органический синтез (реакции гидратации — дегидратации, гидрогалогенирования—дегидро-галогенирования, этерификации, альдольной и кротоновой конденсации, реакции Конрада, Клайзена, Кневенагеля, Коновалс. ва, Гофмана, Скраупа и т. д.) осуществлялся посредством кислотно-основных катализаторов преимущественно в водных и водно-спиртовых растворах, т. е. в одной жидкой фазе. И в силу ярко выраженного механизма образования и разложения промежуточных стехиометрических соединений АК (гл. III) почти все реакции классического органического синтеза считались некаталитическими  [c.246]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    Изомеризация карб0нилы7ых соединений, как н другие реакции внутримолекулярного окисления-восстановления, при которых образуются альдегиды и кетоны (изомеризация ненасыщенных спиртов и а-окисей, гидратация ацетиленовых углеводородов, дегидратация а-гликолей и пр.), протекает главным образом в условиях кислотно-солевого катализа . При этом роль агентов и катализаторов реакций выполняют минеральные кислоты (ча-1це серная кислота разных концентраций), органические кислоты (щавелевая), иногда щелочи (при карбонильном превращении спиртов—гомологов аллилового спирта). Широко применяются хлористый цинк, хлористый алюминий и ртутные соли. [c.243]

    Н. А. Разумовой, Нитрование , Нитрозирование , Пиролиз — В. М. Альбицкой, Диазотирование. Азосочетание — К. Б. Ралль, Сульфирование ароматических соединений — О. Ф. Гинзбургом, Окисление , Восстановление , Реакции гидридного обмена — В, И. Серковой, Гидратация и дегидратация органических соеди- [c.3]

    Ввиду высокой реакционной способности и доступности они приобрели важное значение как промежуточные продукты в некоторых процессах органического синтеза (гидратация олефинов, дегидратация гидроксилсодержащих соединений и др.). Кроме того, моноалкилсульфаты высших спиртов являются ценными поверхностно-активными веществами. Из-за специфических особенностей их синтеза и превращений, а также вследствие большого практического значения, получение и переработка эфиров серной кислоты рассмотрены в специальном разделе данной главы. [c.268]

    В некоторых случаях стерические препятствия оказывают влияние на полярографическое поведение органических соединений и косвенным путем, в частности препятствуя гидратации карбонильной группы, что находит отражение в отсутствии кинетических ограничений высоты полярографической волны, связанных с дегидратацией диольной группы, например для ряда стероидных альдегидов холариминового ряда [95]. [c.130]

    Различные типы реакций, в которых трифторид бора используется в качестве катализатора, подробно рассмотрены в гл. 6 монографии Трифторид бора и его производные [21]. Укажем лищь основные типы таких реакций 1) синтез насыщенных углеводородов олефинов, спиртов, меркаптанов, кетонов, эфиров, соединений, образующихся в результате межмолекулярного взаимодействия с окисью углерода, амидов, анилидов, нитрилов и органических соединений, содержащих серу 2) этерификации, включая конденсацию кислот с олефинами, кислот с ацетиленом, кислот со спиртами и альдольпую конденсацию 3) разложение 4) гидратация 5) дегидратация, включая реакции дегидратации спиртов, кислот и кетонов 6) гидрирование 7) нитрование 8) окисление 9) восстановление 10) сульфирование И) галоидирование  [c.188]

    Несмотря на рациональные идеи, содержащиеся в теории Либиха и в работах, ее развивавших, она не получила в свое время должного оформления и распространения. Причин для этого много, но главная из них связана с трудностям1и прямых или косвенных доказательств непрерывного изменения энергии химических связей в духе идей Бертолле. В то же время химические теории промежуточных соединений было возможно выразить наглядными схемами, оказавшимися весьма плодотворными в классическом органическом синтезе. Так, представления об образовании и распаде промежуточных соединений сыграли выдающуюся роль в изучении реакций полимеризации (Бутлеров, Бертло), гидратации и дегидратации (Бутлеров, Перкин, Клейзен, Кневенагель и др.), изомеризации (Фаворский). Именно поэтому теория промежуточных соединений оставалась еще руководящей идеей в основополагающих каталитических синтезах Г. Г. Густавсона, Ш. Фриделя и Д. Крафтса, П. Сабатье и В. И. Ипатьева Теория Либиха, естественно, тогда [c.126]

    В настоящее время катализ с участием кислот и основавта широко используется в многотоннажвом промышленном органическом синтезе и нефтехимии. Это, в первую очередь, относится л процессам алкилирования изопарафиновых и ароматических углеводородов олефинами, полимеризации (олигомеризации) непредельных соединений, галогенирования, сульфатирования, сульфирования и нитрования, конденсации по карбонильной группе, этерификации, гидратации и дегидратации. [c.384]

    Кислотный катализ. В органическом синтезе наиболее распространен катализ протонными кислотами — H2SO4, НС1, Н3РО4,. АгЗОгОН, НСООН и др., широко используемый в процессах гидратации и дегидратации, этерификации, алкилирования, конденсации карбонильных соединений и т. д. Известно, что протонные кислоты вступают с основаниями в кислотно-основное (протолитическое) равновесие, которое в зависимости от силы кислоты и свойств среды может включать промежуточные стадии образования комплексов без переноса заряда (за счет водородной связи), комплексов с переносом заряда (ионные пары), и, наконец, свободных ионов  [c.157]


Смотреть страницы где упоминается термин Гидратация и дегидратация органических соединений: [c.268]    [c.166]    [c.231]    [c.197]    [c.9]    [c.6]   
Смотреть главы в:

Лабораторные работы по органической химии -> Гидратация и дегидратация органических соединений

Лабораторные работы по органической химии -> Гидратация и дегидратация органических соединений

Лабораторные работы по органической химии Изд.4 -> Гидратация и дегидратация органических соединений


Катализ в неорганической и органической химии книга вторая (1949) -- [ c.116 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация соединений

Дегидратация



© 2025 chem21.info Реклама на сайте