Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гадолиний, получение

    По данным [33], магнитные свойства ферритовых пленок, приготовленных испарением в вакууме или катодным распылением, значительно хуже, чем у соответствующих объемных ферритов. Например, коэрцитивная сила Яс пленки феррита меди, полученной в работе [33], составила 144 э, что связано со структурными несовершенствами и малым размером зерна в пленке. У пленок феррита гадолиния, полученных катодным распылением, величина [c.10]


    В качестве исходных препаратов использовали солянокислые пиперидин и пиперазин марки х. ч. Кристаллогидрат хлорида гадолиния марки х.ч. был дважды перекристаллизован из солянокислого раствора. Содержание кристаллизационной воды полученного продукта было определено аргентометрическим титрованием Ц] навески хлорида гадолиния. Оно составило 29,1 масс%. Эти данные были использованы в пересчете на безводную соль. [c.86]

    Получение очень низких температур в лабораторных условиях осуществляется последовательным применением различных методов. Испарение жидкого гелия (т. кип. 4,2 К) при быстрой откачке дает температуры вплоть до 0,3 К. Более низкие температуры могут быть достигнуты путем адиабатического размагничивания. Парамагнитная (разд. 16.1) соль, например сульфат гадолиния, охлаждается жидким гелием в присутствии сильного магнитного поля. Соль термически изолируется от окружающей среды, и магнитное поле медленно снимается. В соли происходит обратимый адиабатический процесс, при котором атомные спины [c.73]

    Для получения гидридов (характеристики гидридов представлены в табл. 1) используют метод синтеза в вакуумной установке Сивертса. Кусочки металла очищают от поверхностных окислов, помещают в реактор и дегазируют при 800° С в вакууме 10- мм рт. ст. в течение 30 мин. В систему впускают очищенный и осушенный водород до давления 1 атм и выдерживают металл до полного поглощения водорода, о чем судят по изменению давления в системе. При этих условиях образуются дигидриды самария и гадолиния. [c.74]

    Распределительная хроматография редкоземельных элементов с использованием ди-(2-этилгексил)фосфорной кислоты. V. Получение радиохимически чистого гадолиния и окиси диспрозия. [c.541]

    В более поздней работе ае же авторы отмечают, что они не могли получить высших окислов лантана, неодима, самария, гадолиния, эрбия и иттербия. Они нашли, однако, что состав окиси празеодима, полученной прокаливанием на воздухе, зависит от условий прокаливания и охлаждения. При определении суммы редкоземельных элементов церий следует отделит), перед прокаливанием остальных окислов редкоземельных элементов в токе водорода.  [c.622]

    Многие из редкоземельных соединений обладают сильными парамагнитными свойствами. Кристаллические соединения гадолиния, особенно гидратированный сульфат гадолиния 0(12(804)з ВНгО, применяют при получении крайне низких температур магнитным методом. [c.427]

    Но если цериевая земля оказалась, что называется, сам-треть, то кто может поручиться, что и иттриевая земля не является на деле смесью неведомых еще элементов. Мозандер знаком с опытами Шерера по прокаливанию yttria в закрытой склянке. И еще (свидетельство того, как невредно иногда полистать старые научные журналы), очень уж настораживающей кажется разница в результатах определения содержания yttria в гадолините, получен- [c.17]


    Например, еще в 1794 г. финский химик Юхан Гадолин (1760— 1852) предположил, что в минерале, полученном из Иттербийского-карьера, расположенного вблизи Стокгольма, содержится новый оксид металла (или земля). Поскольку эта новая земля значительна отличалась от уже известных земель, например кремнезема, извести и магнезии, то ее отнесли к редким землям. Гадолин назвал открытый им оксид иттрия по названию карьера спустя 50 лет из этога оксида был выделен в относительно чистом виде новый элемент — иттрий. Примерно в середине XIX столетия химики начали интенсивно изучать состав редкоземельных минералов. Проведенные исследования показали, что эти минералы содержат целую группу новых элементов — редкоземельных элементов. Шведский химик. Карл Густав Мосандер (1797—1858) открыл, например, в конце 30-х — начале 40-х годов XIX в. четыре редкоземельных элемента лантан, эрбий, тербий и дидим. На самом деле их было пять поскольку спустя сорок лет в 1885 г. австрийский химик Карл Ауэр фон Вельсбах (1858—1929) обнаружил, что дидим представляет собой смесь двух элементов, которые он назвал празеодимом и неодимом. Лекок де Буабодран также открыл два редкоземельных элемента самарий в 1879 г, и диспрозий в 1886 г. Сразу два редкоземельных элемента — гольмий и тулий описал в 1879 г, П. Т, Клеве, а в 1907 г. французский химик Жорж Урбэн (1872—1938) сообщил о новом четырнадцатом редкоземельном элементе — лютеции (Лютеция — древнее название Парижа). [c.104]

    КЮРИЙ ( urium, назван в честь П. Кюри и М. Склодовской-Кюри) m — химический элемент, п. н. 96, относится к семейству актиноидов. К. искусственно получен в 1944 г. Сиборгом, Джеймсом и Гиорсо (США). Известно 13 радиоактивных изотопов. Массовое число самого стойкого изотопа 247 (период полураспада 4 10 лет . Несколько миллиграммов К. получено восстановлением СтРз барием. Металлический К. имеет т. пл. 1300° С. В соединениях К. трехвалентен, по свойствам является аналогом гадолиния. [c.143]

    Актуальность отмеченной выше проблемы проверки м(1де лей структур очень часто связана с вопросом правильной интерпретации сведений о фазовых диаграммах. Одним из распространенных вариантов взаимодействия между компо нентами является образование фаз со структурой, не известной ни для одлого из компонентов системы, но существующей у соединений близкого химического состава с другими элементами. Долгое время образование таких фаз опис1лва лось в терминах стабилизации не существующих в чистом виде модификаций, высокотемпературных фаз и т.д. Подобную интерпретацию обычно можно рассматривать как первый шаг к решению проблемы. Более детальное изучение вопроса обычно позволяет выяснить особенности таких стабилизированных фаз. Рентгенография является одним из возможных методов, применяемых для-изучения стабилизированных фаз, причем для получения правильных результатов требуется не только анализ дифракционной картив1ы до стадии определения параметров элементарной ячейки (а иногда субъячейки), но и проверка возможных моделей структуры. В качестве примера можно привести систему СаО - 1/ l2 О У оксида гадолиния в сопредельном интервале температур существует моноклинная модификация со структурой В - S ГП2 Oj. В системе с оксидом кальция монок линная фаза существует вплоть до комнатной температуры. Детальное изучение строения этих фаз показало, что они имеют общую [c.201]

    Металлы III группы. -Металлы III группы Зс, V, Ьа тоже от носятся к редким металлам и содержание их в земной коре очень мало (Ю %ас.с. %). Основные минералы, содержащие эти металлы, — тортвейтит Зсг гО,, гадолинит 2Ве0-У20з-РеО 23102 и другие встречаются как примеси к другим горным породам. Получению Зс, V и Ьа предшествует концентрация сырья или обогащение. Высокая химическая активность этих металлов затрудняет их получение в свободном виде. Их выделяют электролизом расплавленных галидов. [c.337]

    Условия получения безводных хлоридов цериевой группы и хлоридов гадолиния, тербия и гольмия [c.128]

    Кристаллогидрат хлорида р.з.э., полученный растворением окиси в соляной кислоте до pH I—-1,5 и упариванием раствора на водяной бане досуха, загружают в лодочку. Обезвоживание хлоридов р.з.э. производят, пропуская через кварцевую трубу пары четыреххлористого углерода вначале ири температуре 100° в течение 1 часа, затем поднимают температуру до 200—250° и выдерживают продукт при этой температуре еи.ье 1 час, после чего температуру поднимают до 450—500° и выдерживают продукт еще 1—-1,5 часа. Хлориды европия, самария, гадолиния, тербия и гольмия легко окисляются кислородом воздуха до оксихлоридов, поэтому обезвоживание Их кристаллогидратов проводят в атмосфере азота, для чего азот из баллона барботируют чере. баллоичик-испаритель, и насыщенный парами четыреххлористого углерода подают в трубчатую печь. После охлаждения печи до 100° лодочку с хлоридом помещают в сухую камеру, где затем расфасовывают полученный продукт. [c.128]

    Кюрий m (лат. ureum, назван в честь Пьера и Марии Кюри). К.— радиоактивный элемент с п. н. 96, относится к актиноидам. Получен в 1944 г. (в США). Известны изотопы с массовыми числами 238—250. Проявляет степени окисления +3, +4. Период полураспада наиболее долгоживущего изотопа Ст = 1,64-10 лет. Аналог гадолиния. Блестящий серебристый металл, [c.74]


    Белый мягкий пластичный металл. Во влажном воздухе покрывается оксидно-гидроксидной пленкой. Пассивируется в холодной воде не реагирует со щелочами, гидратом аммиака. Сильный восстановитель реагирует с горячей водой, кислотами, хлором, серой. Ион 0(1 бесцветен. Соединения гадолиния по химическим свойствам подобны соединениям лантана. Получение — термическое восстановление 0<120з кальцием, электролиз раствора 0<1С1з. [c.332]

    Открытием н.члиния заполнилась группа редких земель. Иллиний, названный по штату Иллинойсу и его университету, где производились главные работы над этим элементом, принадлежит, вероятно, к наименее распространенным в природе из всех элементов этой группы. Он может быть открыт путем рентгеновского спектрального анализа и определен магнитно-оптическим методом. Его свойства сходны со свойствами других элементов. Количества его, находимые в отходах монацита при производстве газокалильных сеток или в минералах (например, гадолинит), настолько малы, что фракционированных осаждений, производившихся ежедневно в течение трех лет и требовавших много тысяч операций, оказалось недостаточно для получения сколько-нибудь значительного количества чистой иллиниевой соли. Исследования показали, что его основность немного более основности иттрия и значительно больше основности самария. В общем основность редких земель понижается с повышением атомного номера. Исключение представляет иттрий. [c.619]

    Гадолиний-галлиевый гранат (ГГГ)—другой бесцветный гранат, который не только вызвал большой научный интерес, но и произвел сенсацию среди специалистов по драгоценным камням. В этом гранате в отличие от ИАГ вместо иттрия присутствует редкоземельный элемент гадолиний (Ос1), а алюминий замещен галлием (Оа) его формула 0с)з0а5012. Научный интерес к ГГГ возник в основном в связи с тем, что его константа решетки близка к таковой иттриево-железистого граната. Константа решетки — это длина так называемой элементарной ячейки кристалла, представляющей собой наименьшую единицу кубической решетки граната, которая повторяется в трех направлениях, образуя кристалл. Исходя из этого, кристалл ГГГ используют в качестве хозяина , на который можно нанести тонкую пленку магнитного ИЖГ. Эти пленки используются для магнитных запоминающих устройств, о чем кратко упоминалось в гл. I. Сходство констант магнитного ИЖГ и немагнитного ГГГ является необходимым условием для получения тонких пленок хорошего качества. [c.97]

    Для получения более высоких состг.вов гидридов иавеску дигяд-ридов медленно охлаждают в атмосфере водорода и выдерживают при температуре 230 250° С до окончания поглощения водорода. После этого гидриды охлаждают до комнатной температуры в водороде и извлекают из реактора. Таким образом получают тригидриды самария и гадолиния и дигидрид европия. [c.75]

    Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат п хлорид (гадолиний, кстати, всегда трехвалеитен), размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль С(12(304)з-8Н20 помещают в магнитное поле и охлаждают до предельно возможной температуры. А затем дают ей размагнититься. При этом запас энергии, которой обладала соль, еще уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на одну тысячную градуса. [c.146]

    Боридный термокатод — катод на основе металлоподобных соединений типа МеВ в, где Ме — щелочноземельные и редкоземельные металлы или торий. В качестве термокатода наиболее широко применяется гек-саборид лантана, реже — гексабориды иттрия и гадолиния и диборид хрома. Термоэмиссионные катоды из гексаборида лантана работают при температуре 1650° К и обеспечивают получение плотности термоэмиссионных токов до 40—50 а/см в режиме пространственного заряда, а при большой напряженности электрического поля у поверхности катода — до 200 а1см . Высокая механическая прочность и устойчивость таких катодов к ионной бомбардировке позволяет использовать нх в режиме автоэлектронной эмиссии (при напряженностях внешнего электрического поля 10 в/сж значительная часть эмиссионного тока обусловлена туннелированием [c.445]

    Производство радиоизотопов без носителей из мишеней, облученных дейтронами или альфа-частицами в циклотроне U-120 (в Кракове). Часть 2. Получение радиоизотопов гадолиния, самария и тулия из самариевых, неодимовых и гольмиевых мищеней. [c.547]

    Такое совпадение результатов, полученных тремя химиками, является, кроме-того, убедительным подтверждением пригодности примененного ими метода разделения редкоземельных элементов. Как видно из таблицы, почти такое же соотношение между трехвалентными редкоземельными элементами (как в гадолините и иттри-алите) имеется и в роуландите. [c.632]

    Окислы трехвалентных лантана, церия, гадолиния, тербия, иттрия, диспрозия, иттербия и лютеция белого цвета. Окись тулия белого цвета с зеленоватым оттенком, гольмия — бледно-желтая, празеодима — зеленовато-желтая, европия — бледно-ро-зовая, эрбия — розовая и неодима — лиловая. ТЬ40, (полученная прокаливанием оксалата) — темно-коричневого цвета, РгеОц (прокаленная па воздухе) — коричневато-черного цвета, а СеОг (полученная прокаливанием на воздухе) в горячем состоянии имеет желтую окраску, а по охлаждении становится белой. [c.633]

    В, М. Иоффе, С. М. Горелик и В. М. Буров [842] разработали метод получения иттрия, самария и гадолиния с катодом из расплавленного цинка температура ванны 800°С, состав 20% хлорида РЗЭ, остальное эквимолярная смесь хлоридов натрия и калия, плотность тока 2 выход по току до 967о [c.328]


Смотреть страницы где упоминается термин Гадолиний, получение: [c.97]    [c.35]    [c.144]    [c.63]    [c.276]    [c.168]    [c.49]    [c.49]    [c.148]    [c.277]    [c.75]    [c.215]    [c.38]    [c.250]    [c.38]    [c.38]    [c.144]    [c.147]    [c.55]    [c.742]    [c.293]    [c.384]    [c.125]   
Экспериментальные методы в неорганической химии (1965) -- [ c.590 ]




ПОИСК





Смотрите так же термины и статьи:

Гадолиний

Гадолиний сульфат и получение сверхнизких

Гадолинит



© 2025 chem21.info Реклама на сайте