Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зонная теория энергетических уровне

    Различие в проводимости твердых веществ хорошо объясняется на основе зонной теории проводимости. Согласно этой теории энергетический уровень атома твердого кристаллического тела представляется разделенным на зоны (рис. 14). Зоной проводимости называется зона энергетических уровней, которыми обладают свободные (возбужденные) электроны. Зоны уровней, в которых находятся обладающие наибольшей энергией, т. е. валентные, электроны, называются валентными зонами. Эти зоны могут быть разделены промежуточными уровнями энергии, в которых электроны находиться не могут. [c.14]


    Зонная теория твердого тела позволяет объяснить основные физико-химические свойства кристаллов высокую электрическую проводимость и теплопроводность металлов, особенности проводимости в полупроводниках, изолирующие свойства диэлектриков и т. п. Электрическая проводимость кристаллов определяется наличием квазисвободных электронов, способных к направленному перемещению под действием внешнего электрического поля. Если на электрон действует сила, определяемая напряженностью электрического поля, то он начинает двигаться с ускорением и его кинетическая энергия при этом возрастает. В зонной модели, которая является результатом применения представлений квантовой механики к твердому телу, возрастание энергии электрона равносильно его переходу на более высокий энергетический уровень. При наличии в зоне разрешенных энергий вакантных уровней, ко- [c.309]

    Объяснение электропроводности металлов, полупроводников и диэлектриков дается на основе квантовой теории строения кристаллических тел — так называемой зонной теории. Рассмотрим некоторые общие положения этой теории. Переход атомных паров в кристаллическое вещество можно рассматривать как химическую реакцию, так как оптические, термодинамические, электрофизические и другие свойства твердых тел отличаются от свойств газов. Важно отметить, что атомные спектры газов имеют линейчатое строение, а спектры твердых тел имеют сплошной характер или полосатую, очень сложную структуру. Уже при взаимодействии двух одинаковых атомов дискретные атомные энергетические уровни расщепляются и превращаются в полосы. Тем большее расщепление уровней происходит, когда большое число N атомов, например лития, сближается с далеких расстояний до расстояний, на которых они находятся в кристаллической решетке. На рис. 70, а это расстояние между ядрами обозначено на оси абсцисс буквой о- По оси ординат отложена энергия. Находясь на больших расстояниях, атомы не взаимодействуют друг с другом, и диаграмма уровней будет такая же, как и для изолированного атома лития (1 25 ). При сближении атомов начнется взаимодействие между ними, прежде всего у каждого из них станет расщепляться уровень валентных электронов (2х). Уровень 2з) расщепляется в систему весьма близко расположенных N уровней, образуя целую полосу (зону) уровней. Более глубокие уровни при образовании кристалла оказываются совсем не расщепленными или только незначительно расщепленными. [c.233]


    Созданию электронной теории катализа на полупроводниках посвящены работы Ф. Ф. Волькенштейна. В этой теории рассматривается полупроводниковый катализатор, представляющий"собой идеальный кристалл, образованный ионами с оболочкой инертного газа. При отличной от абсолютного нуля температуре в зоне проводимости такого кристалла имеются электроны, обеспечивающие свободные валентности на его поверхности. Эти электроны участвуют в образовании связей адсорбирующихся частиц с поверхностью кристалла. Возможны три типа связи. 1. Слабая гомеополярная связь, обеспечиваемая валентным электроном одного из адсорбирующихся атомов, затягиваемым в зону проводимости кристалла. 2. Прочная гомеополярная связь, в которой кроме этого электрона участвует электрон кристалла, переходящий на локальный энергетический уровень, возникающий в запрещенной зоне кристалла в результате адсорбции. 3. Ионная связь, образующаяся при переходе валентного электрона адсорбированного атома в решетку кристалла. Наиболее реакционноспособны состояния со слабой связью, так как они характеризуются ненасыщенными валентностями. [c.279]

    В соответствии с классической кинетической теорией при абсолютном нуле все электроны в металле должны занять самый низкий энергетический уровень, т. е. иметь энергию, равную нулю. Согласно представлений хмоле кулярных орбиталей, в применении к металлу даже при абсолютном нуле только два электрона смогут занять самую низкую по энергии орбиталь. Остальные электроны должны располагаться на орбиталях с большей энергией. И следовательно, энергия таких электронов будет всегда выше нуля. При повышении температуры электроны, расположенные на верхних орбиталях, приобретая энергию, смогут перейти на следующие по энергии орбитали. Электроны, расположенные на более низких орбиталях, не способны (до определенного предела) приобретать энергию, так как ближайшие орбитали над ними заняты электронами. Таким образом, приобретать энергию смогут только электроны, находящиеся на самых верхних уровнях зоны молекулярных орбиталей. Это составляет лишь незначительную долю от общего числа валентных электронов. Таким образом, вклад в общую величину теплоемкости будет вносить только малая часть электронов, примерно одинаковая для различных простых веществ — металлов и наметал лов. [c.123]

    В терминах зонной теории, если высший заполненный энергетический уровень атома лежит выше уровня Ферми в твердом теле, то электрон может перейти к твердому телу, а адсорбируемый атом становится положительным (рис. 3.20), если же незаполненный уровень адсорбированного атома лежит ниже уровня Ферми, то электрон может перейти к атому, который заряжается отрицательно. Вероятность подобных процессов определяется, естественно, высотой энергетического барьера между атомом и твердым телом. [c.136]

    Понятия теории твердого тела энергетическая зона, уровень Ферми, плотность состояний и другие — широко используются в современной электронной теории гетерогенного катализа [30]. Поэтому электронная структура катализатора представляет едва ли не больший интерес, чем структура субстрата, а исследование зонной структуры — желательный, если не необходимый элемент прогнозирования его свойств. [c.36]

    По теории Дирака [7] вакуум представляется как энергетическая "зона", заполненная целиком фермионами, верхний энергетический уровень которой имеет энергию -т с, где т - масса покоя возникающей частицы, с - скорость света. Фермионы, находящиеся в вакууме (при Е < -т с") не обнаружимы, так как ие могут принимать участия в каких-либо взаимодействиях. При сообщении частицам в вакууме энергии Е. .> 2 - т с" они переходят через запрещенную "зону", их энергия Е > т с и частицы становятся наблюдаемыми. Возникающие при этом вакансии в зоне отрицательных энергий ведут себя как античастицы. [c.15]

    Большой интерес для теории и практики получения кристаллофосфоров представляет проблема самоактивирования сульфида цинка. Вопреки общепринятому представлению, что активаторами в цинк-сульфидном фосфоре с голубы 1 свечением служат избыточные атомы цинка, появляющиеся в результате удаления некоторого количества серы при термической обработке 2п8, Л. А. Громов установил, что эту функцию выполняет окись цинка. Его опыты показали, что избыток цинка не вызывает появления характерного голубого свечения. Оно возникает лишь в таких условиях, когда образуется окись цинка. Ширине запрещенной зоны окиси цинка, равной 3,2 эВ (как и следовало ожидать, меньшей, чем ширина запрещенной зоны сульфида цинка), отвечает энергетический уровень, отсчитанный от дна зоны проводимости сульфида цинка. Данному уровню соответствует длина волны, равная 390 нм. Это на 84 нм меньше измеренной длины волны в максимуме спектра самоактивированного голубого свечения сульфида цинка. [c.125]


    Исходя из теории энергетических зон, авторы работы [152] сделали попытку объяснит влияние полярных групп на статическую-электризацию полимеров. Полярные группы в полимерах соединяются с основной цепью посредством валентных связей, и можно предположить, что с энергетической точки зрения они оказывают такое же влияние, как и примеси в металлах. Если энергетический уровень, вызванный введением полярной группы, находится выше, чем уровень основной цепи, то электризация этого полимерного вещества должна определяться полярной группой. Приведенный выше пример существенного влияния незначительной концентрации аминогрупп (0,11—0,34%) в олигостироле на знак и величину статического потенциала как будто подтверждает это объяснение. [c.53]

    Гипотезы о специфических зонах проводимости в биоструктурах. Идея о существовании специфических цепей передачи энергии в биоструктурах, о которых упоминалось в работе [75], не нова. По-видимому, одними из первых высказали мысль о миграции электронов в комплексах хлорофилла и генах по специфическим зонам Мёглих и Шён [95]. Эта идея была поддержана Р. Иорданом [69], однако, наиболее четкое выражение она получила у А. Сцент-Дьердьи [127]. В то время только ставился вопрос о рассмотрении биологических структур в качестве твердых тел и о применимости к ним подходов, развитых в физике твердого тела, в частности, зонной теории полупроводников. Согласно Сцент-Дьердьи, многие явления, известные в биологии, можно объяснить с позиции зон проводимости. В частности, предположение об общих энергетических уровнях дает простой ответ на вопрос, как энергия распада АТР может быть сообщена большому числу молекул, участвующих в мышечном сокращении. Другой вопрос, как белки окисления взаимодействуют друг с другом, станет понятным, если мы предположим, что один фермент связан с другим различными энергетическими уровнями, и электрон двигается не прямо от одного вещества к другому, а внутри соответствующей энергетической зоны и может переходить на более низкий энергетический уровень и отдавать энергию только там, где она требуется, чтобы совершить работу . Эта выдержка из статьи [127] показывает привлекательность представлений о зонах проводимости для объяснения биологических явлений. [c.49]

    Большинство неметаллических катализаторов обладает полупроводниковыми свойствами, поэтому заманчиво использовать это их свойство в качестве ключа к раскрытию природы активности. Такая возможность связана со способностью полупроводника обмениваться зарядом с адсорбированной частицей, принимая или отдавая электрон. Согласно существующей теории, центром хемосорбции (активным центром) является свободный электрон (или дырка ) полупроводника. Адсорбированные атомы или молекулы рассматриваются как примеси, нарушающие строго периодическую структуру решетки. В энергетическом спектре кристалла они могут быть изображены локальными уровнями, расположенными в запрещенной зоне полупроводника (см. гл. V). Разные частицы занимают различные уровни в запрещенной зоне. Если реагирующая частица занимает уровень, расположенный ближе к зоне проводимости, т. е. уровень адсорбированной частицы находится выше уровня Ферми на поверхности, то все хемосорбционные частицы являются донорами электронов. Если же уровень адсорбированной частицы ниже уровня Ферми, она является акцептором электронов. Таким образом, адсорбционная способность и каталитическая активность поверхности полупроводника определяются взаимным расположением локального уровня адсорбированрой частицы и по,ложением уровня Ферми на поверхности. Реакция называется акцепторной, если скорость 472 [c.472]

    Теория электрохемилюминесценции была разработана Маркусом [ 420] при общем исследовании гетерогенных электронных переходов [ 432] и Хойтинком [ 428]. В большенстве случаев сам акт электронного перехода не вызывает хемилюминесценции. В случае достаточно экзоэнергетической стадии электронного переноса иона к электроду или наоборот (т. е. электрон переносится на уровень Ферми или с него) можно ожидать возникновения возбужденных частиц. Однако эк-зотермичность катодного электродного процесса на металле может быть существенно уменьшена благодаря переходу электрона с энергетического уровня, лежащего гораздо ниже уровня Ферми, а в анодной реакции - благодаря переходу на уровень, лежащий гораздо выше этого энергетического уровня. Даже при экзотермичности порядка 3 эВ для протекания процесса без возбуждения растворенных электроактивных молекул достаточно ширины заполненной и незаполненной половин зоны проводимости. В действительности возбужденным состоянием является электронный уровень металла. Таким образом, возникновение возбужденного состояния иона, если только оно не имеет слишком малую энергию [420], не может конкурировать с описанным [c.544]

    Характерное отличие переходных металлов от типичных заключается в том, что у первых имеет место перекрытие энергетических зон (з, й а р). В результате этого металлы с незаполненной -оболочкой могут функционировать и как доноры, и как акцепторы электронов, в то время как типичные металлы, например натрий, всегда действуют только в качестве доноров. Так, в атоме никеля в оболочке 4з всего один уровень, поэтому при сближении N атомов никеля получится N уровней типа 45 уровней й всего может быть 5 (на каждом уровне максимальное число электронов равно 2 — всего й электронов может быть не более 10), поэтому при сближении N атомов получится ЪЫ уровней й. В то же время общее число электронов, размещающихся на этих 6Л уровнях, равно 10 Ы, поскольку каждый атом никеля располагает всего 10 электронами (2 — из оболочки 45 и 8 — из оболочки ЗЙ). Часть 5-электронов с неспаренными спинами переходит в -зону. Предполагают, что именно эти электроны принимают участие в возникновении связей между катализатором и реагирующими веществами. При взаимодействии той или иной молекулы с поверхностью металла может произойти диссоциация молекулы, например разложение молекулы на атомы. Каждый атом Н будет связан с металлом за счет пары, образованной электроном водорода и неспаренным электроном металла, находящимся в -зоне. Ненасыщенные молекулы, например молекулы этилена, могут вступить в связь с металлом за счет я-электронов. Следовательно, незаполненная -зона обеспечивает воздюжность возникновения ковалентных связей между металлами и различными веществами, принимающими участие в каталитических реакциях. Необходимо подчеркнуть, что электронная теория катализа на металлах еще находится в стадии развития и ей приходится преодолевать ряд серьезных трудностей. Вопрос о роли -зон нельзя считать решенным, так как доказано (С. 3. Рогинский, О. В. Крылов), что и вещества, у которых нет вакантных уровней в -зоне, например германий, проявляют каталитическую активность в разнообразных реакциях. Практически. мы имее.м дело с катализом  [c.440]


Смотреть страницы где упоминается термин Зонная теория энергетических уровне: [c.125]    [c.129]    [c.78]    [c.29]    [c.178]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.661 , c.666 ]




ПОИСК





Смотрите так же термины и статьи:

Зонная теория

Зоны энергетические

Теория энергетических зои

Уровни энергетические

Энергетические зоны Зон энергетические



© 2025 chem21.info Реклама на сайте