Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут структура

    Мышьяк и сурьма имеют слоистую структуру в твердом состоянии. У висмута структура металла. [c.464]

    На рис. 2 показана структура фазы молибдата висмута. Для нее характерно наличие октаэдров из атомов кислорода вокруг иона молибдена, которые чередуются со слоями из ионов висмута. Структура других фаз молибдата висмута изучена недостаточно, но выяснено, что в них содержится больше кислородных вакансий, чем в -фазе. [c.19]


    Измерения, проведенные с монокристаллами различных металлов (меди, висмута, хрома, кадмия, никеля, олова и свинца), показали, что водородное перенапряжение в значительной степени зависит от символа грани монокристалла, на которой катодно выделяется водород. Поэтому величины водородного перенапряжения, найденные для твердых катодов с поликристаллической структурой, представляют собой некоторые усредненные значения. Они могут [c.398]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру (рис. 163) типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду Аз — 8Ь — В1 различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,037 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют. [c.380]

    Хорошо известно, что нафтенат свинца также является ингибитором коррозии в литиевых смазках. Соединения висмута и здесь превосходят свинец, так как кристаллическая структура сульфида висмута и висмуторганических соединений обеспечивает большую полярность по сравнению с сульфидом свинца это является и вторым объяснением его лучших противозадирных свойств. [c.278]

    Химия гидроксо- и оксокомплексов сурьмы и висмута характеризуется сильной склонностью к конденсации, приводящей к образованию сложных каркасных структур. Это свойство начинает проявляться уже у кислородных соединений фосфора. [c.530]

    Явление естественной (природной) радиоактивности (см. 3.1) показывает, что не только атом, но и ядро атома имеет сложную структуру. Природная радиоактивность характеризуется самопроизвольным превращением атомных ядер, когда ядро одного элемента без всякого воздействия извне превращается в ядро другого элемента. Все элементы, расположенные в периодической системе после висмута, радиоактивны. [c.70]

    Диаграмма плавкости и структура сплавов кадмия и висмута представляет собой частный случай двойных (бинарных) сплавов, при затвердевании образующих смесь кристаллов чистых компонентов. Такого типа диаграммы плавкости дают также сплавы свинца и сурьмы, алюминия и олова, олова и цинка и т. д. [c.311]


    Интересно, что при переходе по ряду 8—8е—Те максимум теплоты образования смещается от сурьмы (и мышьяка) к висмуту. Теллурид висмута (т. пл. 580, т. кии. 1172 °С) используется в некоторых термоэлектрических устройствах. Его кристаллы имеют слоистую структуру и обнаруживают резко различную электропроводность в направлениях параллельном и перпендикулярном слоям. С повышением давления их температура плавления сперва возрастает (до 610 °С при 15 тыс. от), а затем понижается (до 535 °С при 50 тыс. ат). [c.473]

    Для цинка, таллия и кадмия характерна гексагональная структура. Далее (по периодам длинного варианта периодической системы) наблюдаются и иные структуры (например, у мышьяка, сурьмы, висмута — ромбическая решетка). Затем мы вступаем в область неметаллов с их атомными (углерод, кремний, германий) или молекулярными (галогены) решетками. [c.285]

    В своей устойчивой модификации мышьяк — серебристо-серое вещество, свежий излом которого блестит, но быстро тускнеет сурьма выглядит как металл серо-белого цвета со слабым синеватым оттенком, обусловленным примесями а висмут — блестящий белый металл, имеющий розоватый оттенок. Серый мышьяк — полупроводник серая сурьма и висмут обладают небольшой электрической проводимостью. Все они обладают хрупкостью, что объясняется слоистой структурой их кристаллов, образуемой атомами этих элементов, объединенных в плоскостные разветвленные макромолекулы (см. рис. 32,6). [c.268]

    В.И. Данилов и И. В. Радченко обнаружили сходство ближнего порядка расположения атомов в жидком олове, висмуте и свинце со структурой этих металлов в твердом состоянии. Анализируя работы П. Дебая, Дж. Принса, О. Кратки, а также результаты собственных исследований, они пришли к заключению, что различные жидкие металлы вблизи температуры плавления сохраняют основные черты ближнего порядка, характерного для кристалла. При повышении температуры структура плотно упакованных металлов изменяется в сторону уменьшения координационного числа Пи а менее плотных металлов — в сторону увеличения 1. Эти положения стали основополагающими при постановке и проведении дальнейших исследований структуры жидкого состояния вещества. [c.171]

    Отечественными и зарубежными исследователями была изучена структура расплавов почти всех металлов, полуметаллов и неметаллических соединений. Анализ полученных данных приводит к выводу, что по характеру ближней упорядоченности атомов расплавы этих веществ можно разделить на три основные группы. Первую составляют типичные металлы, ко второй относят висмут, галлий, германий, кремний, сурьму и другие элементы с рыхлой упаковкой к третьей группе принадлежат селен и теллур. [c.176]

    Атомы сурьмы и висмута образуют ромбоэдрическую решетку с координационным числом 3 + 3. Они обладают внешней электронной конфигурацией 5s 5p и 6s 6p соответственно. Перекрывание орбиталей р-электронов обусловливает ковалентные связи атомов сурьмы и висмута в твердом состоянии. При плавлении происходит отделение всех валентных электронов, вследствие чего эти элементы приобретают свойства металлов, а их структура становится более плотной. [c.183]

    На рис. 7.8 приведена кривая распределения жидкого висмута, полученная В. И. Даниловым. Вертикальные линии представляют распределение атомов в кристаллической решетке висмута, каждый фиксированный атом в которой имеет три соседа на расстоянии 3,09 A и три — на расстоянии 3,46 A. Очевидно, что первый максимум кривой АпЮ Рз (7 ) охватывает интервал R, отвечающий первой и второй координационным сферам кристалла висмута, его положение R = 3,25 А близко к среднему для решетки. Площадь под ним составляет 7—7,5 ед. Второй максимум примерно отвечает третьей и четвертой координационным сферам кристалла, хотя здесь отчетливо заметен сдвиг его в сторону больших R. Можно заключить, что непосредственно после плавления в жидком висмуте сохраняются элементы сходства структуры ближнего порядка со структурой твердой фазы. Однако полного соответствия атомных упаковок в твердом и жидком висмуте не существует. Если бы ближний порядок в обеих фазах был идентичен, то следовало бы ожидать, что третий максимум окажется в интервале 7 8 к. В действительности он локализуется в интервале R от 6 [c.183]

    По идее В. И. Данилова, в жидком висмуте, галии, германии и других веществах с ажурной упаковкой в твердом состоянии в небольших объемах с заметной вероятностью могут осуществляться упаковки со структурой, характерной для твердой фазы, и упаковки, соответству- [c.184]

    Кристаллическая структура. BigTeg обладает ромбоэдрической решеткой типа тетрадимита (СЗЗ), в основе которой лежит девятислойная упаковка из атомов теллура, две трети октаэдрических пустот заняты атомами висмута. Структура относится к тригональной сингонии, пространственная группа Did — РЗт. Элементарная ячейка содержит одну молекулу BigTeg [212—215]. Средние параметры решетки по данным [212, 213] а = 4,38, с = 30,45 А — для гексагональной ячейки и а = [c.33]

Рис. 163. Слоистая структура шьяка, сурьмы и висмута Рис. 163. <a href="/info/2177">Слоистая структура</a> шьяка, сурьмы и висмута

    Мышьяк, сурьма и висмут существенно отличаются по структуре от типичных металлов и поэтому с металлами твердые растворы обычно не образуют. Более характерно возникновение эвтектических смесей. Так, сплав состава 60% Bi и 40% d плавится при 144°С. Широко применяемый сплав Вуда, температура плавления которого 65—70°С, т. е. HI же точки кипения воды, содержит 50% Bi, 25% РЬ, 12,5% Sn и 12,5% d. Сплав состава 41 % В , 22% РЬ, 11 % Sn, 8% d и 18% In плавит я лишь при 47°С. Сплавы висмута эвтектического состава применяются в автоматических огнетушителях и в качестве припоев. [c.381]

    Оксид висмута (III) Bi20a имеет координационную решетку с искаженной октаэдро-тетраэдрической координацией атомов Различие в структуре, естественно, сказывается на свойствах оксидов. [c.383]

    В периодической таблице, показанной на рис. 14-8, кристаллы элементарных веществ подразделяются на металлические, ковалентные каркасные и молекулярные. В табл. 14-1 устанавливается зависимость между координационным числом атомов в кристалле и структурой элементарных твердых веществ. Большинство элементов кристаллизуются с образованием какой-либо металлической структуры, в которой каждый атом имеет высокое координационное число. К металлам отнесены и такие элементы, как олово и висмут, кристаллизующиеся в структуры со сравнительно низким атомным координационным числом, но все же обладающие ярко выраженными металлическими свойствами. Светлоокрашенная область периодической таблицы включает элементы со свойствами, промежуточными между металлами и неметаллами. Хотя германий кристаллизуется в алмазоподобную структуру, в которой координационное число каждого атома равно только 4, по некоторым из своих свойстг он напоминает металлы. [c.605]

    Иа рис. V,6 сопоставлены некоторые неорганические соединения, обладающие аналогичной структурой, И злесь зависимость С , = / 7 ) для трехокисей мышьяка, сурьмы п висмута, являю-шл- хся однотипными соединениями с аналогпчноп кристаллической ст )уктурой, представляет собой прямые, пересекающиеся в одной точке, а для других веществ — прямые (4, 5,6) не проходят через эту Т( ЧКу. [c.206]

    При совместном использовании соединений серы и висмута, также как и в случае свинца, благодаря тепловой энергии трения образуются сульфиды железа и висмута. Более высокий противо-задирный эффект объясняется тем, что висмут обладает большей растворимостью в железе, чем свинец, образуя более прочную защитную пленку сплава на поверхности трущихся деталей. Кристаллическая структура такого сплава в достаточной степени отлична от таковой у чистых металлов. [c.278]

    Большинство тригалидов элементов подгруппы мышьяка имеют молекулярные решетки, трииодиды — слоистые полимеры, образованные октаэдрами ЭНа1в (см. стр. 139). В1Рз имеет координационную решетку. В соответствии с увеличением молекулярного веса и в особенности с переходом к полимерным структурам температуры плавления соединений повышаются. У трифторида висмута, имеющего координационную решетку, температура плавления наиболее высокая (730°С). [c.430]

    Ж. Пруст, 1801—1808 гг.). Это значит, что соотношения между массами элементов, входящих в состав соединения, постоянны. Закон всегда выполняется для газообрг13ных и жидких веществ. Для вещества, находящегося в твердом состоянии, строго говоря, закон не справедлив. Это связано с тем, что в кристаллической структуре любого твердого вещества всегда, в той или иной мере, имеются пустоты, не заполненные атомами, примесные атомы других элементов и другие отклонения от идеальной структуры. На все это, наряду с температурой, давлением, концентрациями веществ, влияет очень большое число других факторов, связанных уже с технологией получения, выделения и очистки вещества. Так, в соединении висмута с таллием на единицу массы таллия может [c.19]

    Переход белого олова в серое совершается очень медленно. При понижении температуры до =—40°С скорость перехода тем выше, чем ниже температура. При дальнейшем понижении скорость превращения понижается. Некоторые добавки (соли висмута и сурьмы) замедляют процесс, а другие (хлоростан-нат аммония) его ускоряют. Олово, содержащее 0,5% В1, полностью теряет способность к полиморфному превращению. Скорость перехода белого олова в серое увеличивается с повышением степени чистоты олова. Кроме того, скорость превращения зависит от степени измельчения олова чем меньше размер зерен, тем выше скорость полиморфного перехода. На скорость превращения влияют также механические напряжения в структуре кристаллического белого олова чем сильнее деформированы кристаллы, тем выше скорость процесса. [c.223]

    По структуре внешних электронных слоев атомы мышьяка (АвЧр ), сурьмы (Бх брЗ) и висмута (бх бр ) подобны атому фосфора и в своем основном состоянии тоже трехвалентны. Их последовательные энергии ионизации (эв) сопоставлены ниже  [c.466]

    Все элементы, располагающиеся слева от границы Цинтля, ха рактеризуются дефицитом валентных электронов, в силу чего в плот поупакованпых кристаллических структурах соответствующих про стых веществ доминирует металлическая связь. При этом граница Цинтля не является границей между металлами и неметаллами а лишь разграничивает элементы с дефицитом и избытком валент ных электронов, что определяет собенности кристаллохимического строения простых веществ. Обращает на себя внимание ряд исключений из правила 8—N. Так, свинец, расположенный справа от границы Цинтля, обладает плотноупакованной кристаллической решеткой с металлическим типом связи. Для последнего представителя УА-группы — висмута — характерно малое различие в межатомных расстояниях внутри слоя и между слоями 0,310 и 0,347 им, что фактически приводит к координационному числу 6. Ни одна из двух известных структур полония также не отвечает правилу К)м-Розери. Объясняется это тем, что с увеличением атомного номера элемента в пределах каждой группы возрастает количество элект- [c.30]


Смотреть страницы где упоминается термин Висмут структура: [c.179]    [c.71]    [c.107]    [c.40]    [c.424]    [c.578]    [c.595]    [c.478]    [c.638]    [c.496]    [c.556]    [c.217]    [c.466]    [c.471]    [c.474]    [c.184]    [c.31]    [c.72]    [c.74]   
Нестехиометрические соединения (1971) -- [ c.179 ]

Неорганические стеклообразующие системы (1970) -- [ c.212 , c.260 ]




ПОИСК







© 2025 chem21.info Реклама на сайте