Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уголь восстановитель

    Следовательно, окись меди — окислитель, а уголь — восстановитель. [c.64]

    При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (П.) Таки.м способом получают железо (в доменном процессе), водород и многие цветные металлы (олово, свинец, цинк и пр.)  [c.242]

    Месторождения антрацитов, полуантрацитов, каменных и полубитуминозных углей, лигнитов и других видов твердого углеводородного топлива находятся во многих районах земного шара. Интерес к углю появился в начале промышленной революции, когда древесный уголь уступил место коксу, используемому в качестве восстановителя железной руды. Спрос был, в первую очередь, на коксующиеся угли с низким содержанием золы. Слабо-коксующиеся и некоксующиеся угли пользовались меньшим спросом, хотя они широко применялись для производства пара и в [c.67]


    Известный французский химик Бертло использовал в качестве восстановителя иодистоводородную кислоту Н1, при повышенной температуре диссоциирующую с образованием атомарного водорода. Он исследовал. уголь, который при полукоксовании дает [c.175]

    Получение простых веществ химическим восстановлением соединений. В качестве восстановителя применяют уголь и оксид углерода (Н), кремний, металлы (металлотермия), водород. Выбор того или иного восстановителя можно сделать при сопоставлении значений энергии Гиббса образования соответствующих соединений. [c.192]

    Какие из веществ уголь, водород, магний, алюминий — можно использовать в качестве восстановителя при получении бора из борной кислоты Ответ обоснуйте термодинамическими расчетами. [c.146]

    Химические свойства углерода. Углерод является типичным неметаллом (см. разд. 11.4). При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд — осуществляется путем восстановления оксидов металлов углем (или монооксидом углерода). [c.409]

    Уголь является сырьем для химической промышленности. Важнейшая отрасль химической переработки каменного угля — коксохимическая промышленность. При коксовании, которое осуществляется нагреванием угля до 900—1100° С без доступа воздуха, получают целый ряд ценных продуктов кокс, газ, смолу, аммиачную воду и т. п. Кокс используется в качестве высококалорийного топлива и, главным образом,, в черной и цветной металлургии для восстановления металлов из руд. Он является хорошим и сравнительно дешевым восстановителем. Кроме того, кокс служит сырьем для получения карбида кальция (см. гл. И, 7). Химической переработкой каменноугольной смолы н аммиачной воды получают ряд необходимых для народного хозяйства продуктов бензол, фенол, удобрения для сельского хозяйства и т. п. [c.86]

    Уголь — сравнительно активный восстановитель. При высокой температуре он отнимает кислород от окислов многих металлов. Например, при прокаливании смеси окиси свинца РЬО с углем протекает реакция  [c.435]

    Наиболее кардинальным решением проблемы защиты воздушного бассейна является разработка новых методов преобразования энергии, обеспечивающих безвредные выбросы. Одним из таких методов является электрохимический, который обеспечивает прямое преобразование химической энергии топлива в электрическую. Процесс преобразования энергии происходит в топливных элементах (см. XVI. ). Предварительно природный газ или уголь подвергается обработке, обычно водяным паром, при этом получается газ с высоким содержанием водорода, который затем подается в топливный элемент. Так как в топливном элементе окислитель и восстановитель пространственно разделены, то не происходит их прямого взаимодействия, поэтому [c.390]


    Способы получения. Раньше для получения натрия и калия широко использовались термические методы восстановления гидроксидов или карбонатов. В качестве восстановителей использовались железные опилки, уголь, магний и водород (температура от 800 до 1200° С). [c.234]

    Углерод в виде кокса (97—98% С) применяют как восстановитель железа и многих цветных металлов из их руд. Древесный уголь в цветной металлургии используют для создания покровного слоя, предохраняющего расплавленный металл от окисления. Сажа идет на изготовление красок, туши, а также в качестве активного наполнителя для приготовления черных резин. [c.367]

    Газообразные и жидкие фазы образуются в процессе обжига твердых материалов вследствие их возгонки, диссоциации и плавления. Во многих случаях один из твердых реагирующих компонентов газифицируется при взаимодействии с компонентами газообразного теплоносителя. Например, часто уголь, входящий в шихту в качестве восстановителя, лишь частично реагирует в твердом (неизменном) виде с другими твердыми компонентами главным образом он, взаимодействуя с кислородом и диоксидом углерода, находящимися в проходящих через печь газах, превращается в оксид углерода, который и выполняет роль восстановителя. Так, реакция восстановления сульфата железа углем [c.346]

    Металлы, восстанавливающиеся сравнительно легко, выделяются обычно не путем электролиза, а с помощью наиболее дешевого в наше время восстановителя — угля, применяемого в виде кокса. Для металлов, наиболее трудно восстанавливаемых, уголь уже непригоден, и в этом случае прибегают к катодному восстановлению, т. е. выделению путем электролиза. Такие М5-таллы могут окисляться водой, поэтому их соединения подвер- [c.357]

    Кокс и уголь применяют как высококалорийное горючее и как восстановитель в металлургии при выплавке железа и других металлов из руд. Специальные сорта угля применяются в качестве адсорбентов. [c.90]

    Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (И), водород, метан. Так, например, уголь и оксид углерода (И) восстанавливают медь из красной медной руды (куприта) СпаО  [c.231]

    В присутствии сильных восстановителей (например уголь, сера, иодиды) пероксиды щелочных металле проявляют окислительные свойства [c.410]

    В качестве восстановителей могут быть использованы уголь (кокс), активные металлы, карбид кальция, гидрид натрия и др. [c.104]

    Значение электроотрицательности водорода промежуточное между ОЭО металлов и неметаллов и равно 2,1. Поэтому для химии водорода характерны реакции с понижением степени окисления, в которых он функционирует как окислитель, и процессы с повышением окислительного числа, где он играет роль восстановителя. И окислительные, и восстановительные функции может выполнять и атомарный, и молекулярный водород. Однако способность быть окислителем у водорода выражена менее ярко, чем его восстановительные свойства. Это обусловлено сравнительно небольшим значением сродства к электрону для атома водорода. Окислительные свойства водорода проявляются, например, в реакциях со щелочными и щелочно-земельными металлами с образованием их гидридов. По восстановительной активности водород также уступает таким широко распространенным в технике восстановителям, как уголь, алюминий, кальций и др. [c.296]

    В качестве восстановителей применяют уголь, активные металлы, окись углерода, водород, метан. [c.289]

    После отжима на пресс-фильтре шлам просушивали в сушильных камерах ПВ—4,5—0,6 до остаточного содержания влаги около 1 %. Исследовали двухстадийный переплав никелевого шлама с предварительным восстановлением. В качестве флюса применяли песок и битое стекло. Восстановителями служили сажа, измельченный графит, активированный уголь. Восстановительный обжиг проводили при температурах 800—1000 °С в течение 1-1,5 ч в закрытой муфельной печи без перемешивания, но при тщательном предварительном смешении шлама с восстановителем. Переплав осуществляли в графитном тигле объемом 1 дм под слоем флюса в печи ВЧЧ-2-100/0,066. Температуру переплава поддерживали в пределах 1600-1650 °С. Контроль температурного режима проводили пирометром Проминь . Окончание плавки определяли по [c.74]

    Участок I (концентрации гидразина от 1 до 100 мкг/л) соответствует содержанию восстановителя в питательной воде. Так как угол наклона этого участка невелик, то определение концентрации [c.77]

    Пирометаллургаей называется способ получения металла из руд, основанный на их нагревании, например, в печах, продуваемых воздухом. Этот способ используется в двух из трех восстановительных процессов, приведенных в таблице. Нагрев при этом происходит либо на воздухе (обжиг), либо в присутствии восстановителя. Обычно используются уголь (кокс) или моноксид углерода, поскольку они недороги и доступны. Если оба этих вещества не годятся, в качестве восстановителя можно использовать более активный металл. Пирометаллургия — наиболее важный и старейший способ получения металлов из руд. [c.153]


    Выделение металлов из их соединений путем электролиза лежит в основе электрометаллургических процессов. Металлы, восстанавливающиеся сравнительно легко, выделяются обычно не путем электролиза, а с помощью наиболее дешевого в наше время массового восстановителя — угля, применяемого в виде кокса (вспомним, например, доменный процесс). Для металлов, наиболее трудно восстанавливаемых, уголь уже непригоден, и в этом случае прибегают к к а-тодному восстановлению, т. е. выделению путем электролиза. Такие металлы могут окисляться водой, и поэтому их соединения подвергаются электролизу не в водных растворах, а в расплавленном состоянии или в растворах в других растворителях. Так, металлический магний получается электролизом расплавленного Mg b, металлический натрий — электролизом расплавленного едкого натра, металлический алюминий — электролизом раствора окиси алюминия в расплавленном криолите 3NaF AIF3 Все эти процессы проводятся при высокой температуре, для алюминия, например, при 1000 С. Они являются весьма энергоемкими, так как металлы эти обладают малым атомным весом, алюминий к тому же трехвалентен (1 г-экв алюминия равен всего 7 г) и, следовательно, требуется большой (около 4-10 а-ч) расход тока на тонну выплавляемого металла. [c.447]

    Последнее время во Франции весьма активно обсуждался воспрос о двух характеристиках кокса — реакционной способности и электрическом сопротивлении. Как мы уже отмечали, нелегко выявить относительную роль этих двух характеристик, которые меняются почти всегда параллельно и в действительности выражают графити-зируемость угля в области температур его применения, т. е. 1500— 1800° С. Ясно одно — то, что восстановители, дающие наилучшие результаты — древесный уголь, тощие угли и антрациты, а также коксы, содержащие некоторую часть пламенных углей, имеют в общем повышенное электросопротивление. Это кажется логичным, так как если электросопротивление загрузки уменьшается, то необходимо поднимать электроды печей для сохранения плотности тока и рабочего напряжения. Горячая зона распространяется тогда внутрь загрузки, что приводит к некоторым отрицательным явлениям, таким как увеличение тепловых потерь, и возможным затруднениям при выделении окиси углерода. [c.223]

    На заре развития металлургической промышленности в США оксид железа, когорый добывался в окрестности Верхнего Озера, восстанавливали в доменных печах, расположенных неподалеку от шахт, и таким образом получали чугун. В качестве восстановителя в доменных печах использовали древесный уголь, который получали из твердой древесины (этот способ был экономически вьц-оден из-за малых расходов на транспортировку). Какое количество чугуна, содержащего 3% углерода, можно было получить из каждого килограмма железной руды, если предположить, что ею был магнетит РезО , имевший чистоту 66%  [c.369]

    Пирометаллургия занимает ведущее место в металлургической промышленности. Суть метода заключается получении металлов из руд с помощью восстановителей при высоких температурах. В качестве восстановителей используют уголь, активные металлы, водород, метан, рксид углерода (II). Например, один из способов получения олова из оловянного камня (касситерита) ЗпОа заключается в восстановлении олова из оксида Зп(1У) углем  [c.143]

    NOg — сильный окислитель, в нем сгорают уголь (до Oj), фосфор (до PgOg), сера (до SOg). Обычно NOg восстанавливается до N0, но энергичными восстановителями он может быть превращен и в NH3. [c.346]

    Электролиз — дорогой способ получения металлов. Поэтому, по-возможности, для восстановления оксидов до металлов используют такие восстановители, как уголь или оксид углерода. Но металлы групп 1А и ПА сами являются такими мощными восстановителями, что их оксиды не могут быть восстановлены химическим путем, поэтому металлурги вынуждены прибегать к электролизу (см. диаграммы Эллингэма, разд. 10.9.3). [c.386]

    Идентифицировать такие соединения очень трудно. Установлено, что оксиды цинка с кремнеземом при температуре выше 1000 °С образовывают силикаты. Медь при температуре выше 1000 °С растворяется в жидком силикате. Кадмий при температуре 900—1000 °С образовывает силикат, который при температуре выше 1000 °С растворяется в жидкой фазе, образуя стойкий материал. В некоторых литературных источниках утверждается, что до 1000 °С хром силикатов не образовывает, но прокаленный при такой температуре он устойчив даже к воздействию кислот. В присутствии восстановителей (железная пыль, уголь) СГ2О3 в СгОз не переходит, так как в нормальных условиях РеО восстанавливает Сгб+до Сг +. [c.169]

    После скачивания шлака начинается восстановительный период, в течение которого металл оавобождается от болыпей части серы. Металл раскисляют, например ферросилицием и ферромарганцем, и на его поверхность вновь заводят шлак в печь забрасывают известь с добавками флюса — плавикового шпата, шамота, а также восстановители — молотый кокс и древесный уголь. Веществом, связывающим серу, служит известь, но для того чтобы реакция шла удовлетворительно, необходимо соблюдение следующих условий  [c.44]

    Химические процессы, связанные с добычей металлов, сводятся главным образом к восстановлению соединений металла — обычно окисла или сульфида. Главным восстановителем является уголь, часто в виде кокса. В качестве примера можно привести восстановление окисла железа коксом в доменной печи (гл. 19). Иногда применяют и другие восстановители так, сурьму получают из стибнита ЗЬгЗз нагреванием с железом [c.327]

    ДРЕВЕСНЫЙ УГОЛЬ, пористый высокоуглеродистый продукт, образующийся при пиролизе древесины (из 1 м- сырья — 140—180 кг). В зависимости от вида древесины плотн. Д. у. колеблется от 260 кг/м (ель) до 380 кг/м (береза), теплота сгорания — от 30 до 35 МДж/кг. Элементный состав зависит гл. обр. от т-ры обугливания так, в Д. у., полученном при 450 °С, содержится 84,0% С, 3,1% Н н 12% (N -Ь О). Примен. в нроиз-ие активного угля для получ. СЗз (взаимод. с серой) восстановитель в произ-ве крист. 31 (из кремнезема) топливо в быту. Мировое произ-во более 2 млн. т/год. [c.197]

    Четыре приведенных выше прописи получения палладиевых катализаторов различаются между собой тем, что согласно первой из них (1) носителем является сернокислый (или углекислый) барий, тогда как согласно остальным— уголь, В прописях 1 и 2 в качестве восстановителя применяется щелочной раствор формальдегида, а в методиках 3 и 4 восстановление осуществляется водородом. Катализаторы, полученные по прописям 1, 2 и 4, приготовляются и хранятся до тех пор, пока не потребуются, причем палладий находится в них в уже восстаповлепном виде и готов к употреблению. В случаеже катализатора, полученного по способу 3 , восстановление палладиевой соли до металла осуществляют лишь перед употреблением и таким образом при хранении не имеет места потеря активности. Катализатор, приготовленный по прописи 1, подобен тому, который обычно рекомендуют для восстановления по способу Розенмун-да. Методику 4 в основном разработал Гартунг полученный с ее помощью катализатор широко применял в своих работах Коп , а также и другие исследователи. В катализаторе, приготовленном по прописи 4, относительное содержание палладия (по весу) в два раза больше, чем в остальных. [c.411]


Смотреть страницы где упоминается термин Уголь восстановитель: [c.494]    [c.412]    [c.330]    [c.212]    [c.603]    [c.321]    [c.148]    [c.246]    [c.171]    [c.312]    [c.479]   
Минеральные кислоты и основания часть 1 (1932) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель



© 2025 chem21.info Реклама на сайте