Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные соединения восстановление металлами

    В литературе имеются работы, посвященные восстановлению гидридами металлов II]. Наиболее широко применяют алюмогидрид лития, являющийся самым сильным восстановителем. Он может восстанавливать карбонильные соединения и даже соли карбоновых кислот до соответствующих спиртов. Этот реагент хорошо [c.222]

    Восстановление карбонильных соединений (альдегидов и кетонов) комплексными гидридами металлов. [c.341]


    Гидрогенизация ненасыщенных углеводородов. 1,4.-Присоедине-ние. Гидрирование ацетиленов. Гидрирование ароматических углеводородов. Восстановление карбонильных соединений. Восстановление карбоновых кислот и их производных. Восстановление ароматических ьигросоединений. Бензидиновая перегруппировка. Восстановление алифатических нитросоединений. Сопряженное окисление — восстановление. Реакция Тищенко. Восстанавливающие агенты натрий, водород, цинк, амальгамы металлов, алкоголяты алюминия, алюминнйгидриды, иодистоводородная кислота. [c.100]

    Восстановление карбонильных соединений неблагородными металлами [c.120]

    С другой стороны, связывание катиона в комплекс затрудняет реакции, течению которых способствуют катионы [648]. Примерами могут служить восстановление карбонильных соединений гидридами металлов [654] и реакции присоединения литийорганических соединений [655]. Отсюда, в частности, следует, что важной стадией таких реакций является взаимодействие между карбонильной группой и катионом. [c.341]

    Восстановление карбонильных соединений гидридами металлов [c.346]

    Восстановление карбонильных соединений. Гидриды металлов, цинковая пыль в кислой и щелочной среде восстанавливают карбонильные соединения до спиртов  [c.141]

    Во взятом Дюпоном патенте (ам. пат. 2166183) рассмотрена область применения активного кобальта. Дюпон использует кобальт для восстановления динитрилов, получая диамины с хорошим выходом. Например, гексаметилендиамин и его гомологи до декаметилендиамина включительно были получены в присутствии аммиака из соответствующих динитрилов при 120° и давлении 75—150 атм с выходом приблизительно 97% в отсутствие аммиака выход диаминов составлял 87%. Такие выходы не могут быть получены в присутствии никеля, так как этот металл при восстановлении нитрилов обычно благоприятствует образованию вторичных и третичных аминов. Исключением являются некоторые ароматические амины. Чтобы получить хорошие выходы первичных аминов в присутствии никеля в качестве катализатора, необходимо проводить восстановление в присутствии аммиака или аммонийных солей [36]. Скелетный кобальтовый катализатор всегда предпочитают никелю в тех случаях, когда желают при восстановлении получить первичные амины. Это справедливо при восстановлении нитрилов, оксимов и при каталитическом аминировании карбонильных соединений. Восстановленный кобальт недостаточно активен для этих целей. [c.219]


    ВОССТАНОВЛЕНИЕ КАРБОНИЛЬНЫХ СОЕДИНЕНИИ НЕБЛАГОРОДНЫМИ МЕТАЛЛАМИ [c.127]

    Восстановление карбонильных соединений электроотрицательными металлами, например амальгамированным магнием или алюминием, железом, цинком, может приводить к продук- [c.127]

    Осуществлять подобное восстановление могут в соответствии-с их положением в ряду напряжения только неблагородные металлы. Щелочные металлы способны восстанавливать даже наиболее инертные карбонильные соединения (например, эфиры карбоновых кислот), в то время как магний или алюминий реагируют только-с альдегидами и кетонами. Цинк и железо способны быть восстановителями только в кислой среде. Однако и другие вещества, например благородные металлы (платина, палладий), могут действовать аналогично, отрывая необходимые для восстановления карбонильного соединения электроны от молекулярного водорода и перенося их на карбонильное соединение (каталитическое гидрирование) (см. также разд. Г. 4.5.2). [c.114]

    Механизм восстановления металлами или каталитического гидрирования молекулярным водородом аналогичен восстановлению-карбонильных соединений (ср. разд. Г, 7.1.8). [c.222]

    Алифатические кетоны восстанавливают до гликолей при действии активных металлов, таких, как амальгамы натрия, магния или алюминия [891. Выходы в этих реакциях обычно составляют менее 50%. Для восстановления ароматических карбонильных соединений применяют магний и иодистый магний [90, 911, щелочные металлы [92] или электролитические методы [93]. При взаимодействии с натрием или магнием и иодистым магнием в качестве промежуточных соединений образуются, по-видимому, кетилы металлов, такие, как [c.235]

    Восстановление карбонильных соединений неблагородными металлами, например (амальгамированным) магнием или алюмини- ем, железом, цинком и др., может приводить как к продуктам реакции, отвечающим схеме (Г, 7.89а), так и к веществам, соответствующим другому направлению этой реакции [схема (Г. 7.896)]. Направление, по которому происходит реакция, зависит от природы карбонильного соединения, а также от условий реакции (металл, растворитель и т. д.). Альдегиды и кетоны восстанавливаются обсуждаемыми металлами в растворителях, содержащих активные водородные атомы (например, в воде, раз- бавленных кислотах и щелочах, спиртах), преимущественно до соответствующих карбинолов азометины в этих условиях восстанавливаются до аминов С помощью амальгам магния или алюминия кетоны в растворителях, не имеющих подвижного водорода (например, в бензоле), превращаются главным образом в гликоли (пинаконы). Напишите схему образования пинакона из ацетона согласно схеме (Г. 7.89 II в данном случае пинаколят магния) и объясните указанную выше зависимость продукта реакции от растворителя,. [c.120]

    Некоторые затруднения, которые, однако, удается преодолеть, возникают при восстановлении а,-непредельных карбонильных соединений. Как было отмечено выше, комплексные гидриды металлов, как правило, не восстанавливают двойные связи. Такая инертность в целом полезна, так как позволяет селективно проводить восстановление полярных групп. Например, каротиноидные спирты, которые долгое время не удавалось получить, сейчас успешно синтезируют из соответствующих карбонильных соеди- [c.128]

    Альдегиды и кетоны можно непосредственно восстановить в углеводороды с помощью амальгамы цинка в соляной кислоте (Клем-менсен), водородом в присутствии катализатора, например палладия на угле или никеля Ренея, или гидридом металла, например алюмогидридом лития. Можно использовать и косвенные методы. При восстановлении по Кижнеру — Вольфу карбонильные соединения сначала превращают в соответствующий гидразон, который при действий щелочи дает углеводород. Из кетонов можно также получить тиокетали, которые под действием никеля Реней в этаноле дают углеводород. [c.10]

    Важным аспектом реакций восстановления карбонильных соединений комплексными гидридами металлов является их стереоселективность. В результате восстановления несимметричных ациклических кетонов получают, как и следовало ожидать, рацемические спирты. Однако восстановление кетонов, имеющих рядом с группой С=0 хиральный центр, приводит к предпочтительному образованию одного из диастереомерных спиртов. Так, при восстановлении алюмогидридом лития кетонов, имеющих три различных -заместителя, трео-форма спирта оказалась преимущественным продуктом реакции (Я = Ме, 74 % К = Е1, 76 % Я = шо-Рг, 83 % К = трет-Вп, 98 %)  [c.130]

    Очевидно, что последовательность и согласованность этих стадий будет зависеть от таких факторов, как природа субстрата, гомогенность и восстановительный потенциал среды, а также от наличия и природы источника протона. Детальное обсуждение механизма приводится ниже на примере субстратов, для восстановления которых наиболее часто используют систему металл - жидкий аммиак, а именно ароматических соединений, а, /3-непредель-ных карбонильных соединений и алкинов. Во всех случаях реакция восстановления становится возможной благодаря способности аммиака как диполярного и мощного ионизирующего растворителя стабилизировать за счет сольватации возникающие анион-радикалы и анионы. [c.170]


    В водных растворах на катодах из металлов, хорошо адсорбирующих водород, карбонильные соединения могут восстанавливаться до углеводородов, причем этот процесс часто сопровождается деструкцией предварительная активация (например, анодно-катодная поляризация), малые плотности тока и кислая среда благоприятствуют образованию утлеводородов. Снижение активности злектрода (например, в ходе длительного электролиза), увеличение плотности тока, использование щелочных или апротонных растворов благоприятствуют восстановлению карбонильных соединеиий до спиртов. Выходы по току существенно больше на металлах с высоким перенапряжением водорода. [c.341]

    Значительные различия в поведении одно- и двуядерных карбонильных соединений металлов по отношению к дифосфинам, диарсинам и в меньшей степени к дисульфидам, по-видимому, связаны с относительной легкостью расщепления лигандов и замещения карбонильного лиганда. В реакциях двуядерных карбонилов обе стадии протекают при одних и тех же условиях и обычно не разделяются, в то время как в случае одноядерных карбонилов сначала происходит замещение карбонильных групп, после чего уже при более жестких условиях осуществляется расщепление присоединившегося лиганда. Это различие может быть обусловлено, по крайней мере частично, относительной легкостью восстановления дисульфида или дифосфина до соответствующих сульфидных или фосфидных анионных лигандов при богатой электронами связи металл — металл, неизменно присутствующей в двуядерных карбонилах металлов. Одноядерные карбонилы и их промежуточные комплексы, такие, как XI, не имеют легко доступных электронов, и возможно, что в этих случаях после присоединения лиганда температуру повышают именно до того предела, когда начинается гомолитическое расщепление присоединенного лиганда. Несомненно, имеют значение также и другие факторы, например подвижность карбонильных групп в промежуточных комплексах и влияние растворителя на процесс замещения окиси углерода, однако рассмотренное выше упрощенное представление, по-видимому, согласуется с большей частью известных экспериментальных наблюдений. [c.277]

    Как уже отмечалось ранее, связь С=С легко встраивается в собираемую молекулу с помощью одного из набора стандартных методов, таких, например, как алкилирование ацетиленидов или этинилирование карбонильных соединений. Благодаря легкости осуществления селективного превращения тройной связи в двойную (каталитическое гидрирование или восстановление металлами) правомерно рассматривать алкины как синтетические [c.147]

    Восстановление карбонильных соединений до спиртов обычно проводится с помощью алюмогидрида лития (ЫА1Н4), боро-гидрида натрия (МаВН4), металла и кислоты либо путем каталитического гидрирования (На + катализатор, которым служит обычно благородный металл или СгаОз+А Оз)  [c.163]

    ЮТСЯ более стабильные изомеры [320]. К сожалению, полученные данные не имеют общего характера п их интерпретация, приведенная выше, является весьма упрощенной. В частности, стереохими-ческие результаты реакции восстановления а,р-ненасыщенных карбонильных соединений системой металл — донор протонов сильно зависят как от характера этой системы, так и от условий реакции. Так, восстановление циклогексилиденуксусной кислоты, изображенной на рис. 2-56, в соответствующую циклогексан-уксусную кислоту системой калий — изопропиловый спирт — жидкий аммиак приводит исключительно к соединению с кислотной боковой цепью в р-положении (экваториальном), если гидроксильная группа при С-4 занимает а-положение (аксиальное). Однако, если при С-4 находится р-гидроксил (экваториальный), образуется соединение с а-боковой цепью (аксиальной) [321]. Кроме того, в том случае, когда восстанавливают соединение с a-4-гидроксильной группой, содержание продукта с р-конфигу-рацией боковой цепи в продуктах реакции изменяется от 100% для системы калий — изопропиловый спирт — жидкий аммиак до соотношения 4 3 в пользу а-боковой цепи при переходе к системе литий — жидкий аммиак (в присутствии или в отсутствие изопропилового спирта) [321]. Более того, показано, что при восстаповлепии некоторыми системами образуется менее стабильный изомер. Так, ири восстановлении 7-метокси-5-метил-д1(1о) окталона-2 (рис. 2-57) системой литий — этиловый спирт — жидкий аммиак образуются только производные гракс-декали-па [322]. В данном случае вследствие диаксиального взаимодействия СНз-СНзО в траке-декалоновых соединениях соответствующие производные г кс-декалина должны быть более стабильными, и тем не менее последние не образуются. Предполагалось [322], что стереохимия восстановления в данном случае определяется требованием наличия перекрывания орбитали пары электронов образующегося карбаниона с л-орбнталями карбонильной группы. Для этого необходимо, чтобы орбиталь карбаниона была аксиальной, а не экваториальной. Последнее приводит к конечному продукту реакции с тракс-сочленением колец. Следует отметить, что упомянутое выше утверждение, согласно которому свободная пара электронов занимает аксиальное положение, не оспаривается, однако предполагается, что причиной этого является скорее перекрывание орбиталей, чем пространственные требования свободной пары электронов. Очевидно, что этот новый аргумент непосредственно неприменим к стереохимии карбанионов, в которых отсутствует перекрывание орбиталей свободной пары электронов и карбонильной двойной связи. [c.151]

    К области реакции альдегидов и кетонов с криптооснованиямн относятся так называемые реакции с участием гидрид-ионов . Такой механизм приписывается, например, восстановлению карбонильных соединений комплексными гидридами металлов  [c.129]

    Восстановление карбонильных соединений и оксиранов гидридами металлов, металлами и металлоорганическими соединениями  [c.216]

    Восстановление карбонильных соединений металлами и каталитически возбужденным водородом. Восстановление по Кижнеру — Boльфy  [c.113]

    Наиболее распространенным восстановителем является водород i в момент выделения (атомарный водород), а также молекулярный I водород в присутствии катализаторов (никель Ренея, платиновая 5 чернь, палладий на угле и др.). Для восстановления карбонильных соединении используют гидриды металлов (LiAlH4, NaB 4 и др.). Процесс протекает мягко с высокими выходами продуктов восстановления. Кроме гидридов металлов для этой цели применяют так- же амальгамы (Al/Hg, Zn/Hg, Na/Hg). [c.199]

    Хотя восстановление обычных карбонильных соединений я производных карболовых кислот представляет собой наиболее широкую область применеиня комплексных гидридов металлов, есть и некоторые другие примеры, достаточно полезные в синтетическом плане и заслуживающие обсуждения. Некоторые из них приведены на схеме 4.1. [c.128]

    На висмуте свободная энергия адсорбции в среднем на 1,8 кДж/моль ниже, чем на ртути. На платине максимальная адсорбция наблюдается при потенциале +0,2 В. В риде случаев установлено, что восстанавливаются адсорбированные молекулы [64. 68. 84, 85], димеризация радикалов происходит иа поверхиости электрода [64, 86, 87], а адсорбированные вещества индуцируют оптическую активность продуктов реакции [88—91] Электрокаталитический характер процесса восстановления карбонильных соединеиий иллюстрируется также зависимостью со-отно1нения цис- н транс-изомеров циклогексанола от природы металла [92]. Адсорбция про 1вжуточных продуктов, пс-види- шчу, иногда носит характер хемосорбции и приводит к образованию металлорганических соединений [62, 93—95], хотя следует считаться и с возможностью реакции карбанионов с катионами металла электрода [96]. По-видимому, процесс образования углеводородов при электровосстановлении многих карбонильных соединений, особенно в кислых средах, идет через стадию образования поверхностных металлорганических соединении [76, 93, 95, 97—99]. [c.323]

    Борогидрид натрия ЫаВН4 не восстанавливает двойные углерод-угле-родные связи, даже если они сопряжены с карбонильными группами," и поэтому используется для восстановления таких ненасыщенных карбонильных соединений в непредельные спирты. (Восстановление гидридами металлов рассмотрено как нуклеоф 1ЛЬное присоединение в разд. 19.13.) [c.607]

    Широкое применение в органическом синтезе находят тетракар-бонилфсрраты щелочных металлов, например КНРе(С0)4 и К2ре(СО)4, легко получаемые реакцией Ре (СО) 5 с КОН или амальгамой калия (см. также разд. 15.6.3.6). Так, анион [НРс(С0)4] может применяться для восстановления оксидов олефинов в олефины [322], восстановления . -ненасыщенных карбонильных соединений в соответствующие насыщенные карбонильные соединения [323, 324], алкилбромидов в алканы [325] и хлорангидридов кислот в альдегиды [326]. Возможно, что при этом протекает нуклеофильная атака карбонилферратного аниона с последующим восстановительным элиминированием от атома железа (схема 286). [c.326]

    Роль ионов цинка при восстановлении карбонильных соединений алкогольдепидрогеназой сводится к поляризации карбонильной группы путем координации с металлом и к последующему переносу гидрида от 1,4-ди гидроникотин амидного фрагмента кофермента NADH к углеродному атому карбонильной группы. Следует отметить, что гексахлорацетон, будучи бедным электронами карбонильным соединением, может проявлять лишь минимальную тенденцию к связыванию с ионами металлов. Изучение этой каталитической системы было предпринято с целью получить ответ на единственный вопрос ускоряют ли ионы цинка восстановление неспецифического субстрата — гексахлорацетона, если реакция протекает по механизму, показанному на схеме 9.4 Пример каталитического действия комплекса цинка состава 2 1 (ДНА—ПЦФ—Пи—Zn"—Пи—ПЦФ— ДНА) является пока единственным. Основное же действие ионов цинка в этой системе сводится к образованию инертных [c.245]

    Интересной и важной в синтетическом отношении модификацией пинаконового восстановления является восстановительная димеризация кетонов или альдегидов, катализируемая солями титана низшей степени окисления. Такой катализатор образуется при восстановлении хлорида титана (1П) Ti lj ше-лочным металлом или цинк-медной парой. В отличие от классического пинаконового восстановления, продуктами восстановительной димеризации карбонильных соединений, катализируемой солями титана низшей степени окисления, являются алкены  [c.282]

    Восстановление карбонильных соединений [10]. Альдегиды и кетоны восстаиавливаются до соответствующих спиртов щелочными металлами (Ь , Ыа, К) в ГМТФК в присутствии протонных растворителей, таких, как трет-бутанол. [c.93]

    Препаративное восстановление карбонильных соединений I ще осуществляют с помощью гидридов металлов Ь1Н, Ыа Ь1А1Н4, КВН4. Реакция проходит как нуклеофильное присоеди ние по карбонильной группе и включает нуклеофильную ата карбонильного атома углерода гидрид-ионом. При последующ гидролизе продукта присоединения образуется спирт. [c.226]


Смотреть страницы где упоминается термин Карбонильные соединения восстановление металлами: [c.596]    [c.289]    [c.67]    [c.79]    [c.153]    [c.12]    [c.223]    [c.244]    [c.904]    [c.1655]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.113 , c.120 ]

Общий практикум по органической химии (1965) -- [ c.415 , c.421 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление карбонильных соединений

Восстановление карбонильных соединений металлами и каталитически возбужденным водородом. Восстановление по Кижнеру — Вольфу

Восстановление карбонильных соединений неблагородными металлами

Восстановление металлами

Карбонильные соединения

Карбонильные соединения, восстановление соединениями

Металлы соединения



© 2025 chem21.info Реклама на сайте