Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление металлов из их руд и химических соединений

    На поверхность химически наносят проводящий слой путем восстановления металлов (Ag, Си, Аи, Pt и др.) из водных растворов их солей или получают пленки в виде сернистых соединений некоторых металлов (Ag, Си). Наиболее широкое применение получили пленки серебра и меди. Серебро восстанавливается из раствора АдЫОз или комплексной аммиачной соли Ag(NHз) NOз органическими восстановителями (формальдегид, глюкоза, моносахариды, сегнетова соль, пирогаллол и т. д.). Медь восстанавливается из аммиачных и щелочных глицератных растворов сахаром, сегнетовой солью, формальдегидом, гликолем, фенилгидразином, гидроксиламином и др. В обоих случаях необходима предварительная обработка — сенсибилизация — поверхности формы 0,1—3%-ным раствором двухлористого олова (погружением или распылением) с последующей тщательной [c.443]


    Химические — восстановление металлов из водных растворов их соединений (меднение, никелирование, серебрение).  [c.64]

    Одна из самых актуальных проблем химии того времени — проблема горения, восстановления и окисления металлов — привлекла внимание А. Лавуазье. 20 февраля 1772 г. он сделал в своем лабораторном журнале программную запись Я поставил перед собой задачу все повторить с новыми предосторожностями, дабы объединить все то, что мы знаем о том воздухе, который связывается или выделяется из тел, с другими добытыми познаниями и создать теорию, которая должна вызвать революцию в физике и химии . Французский ученый М. Бертло отметил в свое время, что этим вступлением А. Лавуазье приступил к реформе в химии. Как развивались его исследования, приведшие к созданию кислородной теории горения и окисления, сыгравшей огромную роль в становлении химии как самостоятельной науки Надо сказать, что революцию в химических воззрениях А. Лавуазье совершил не столько постановкой новых опытов, не в результате открытия новых реакций или изучения свойств химических соединений, а в результате последовательного применения к изучению химических явлений физических методов исследования, в частности точного взвешивания веществ, участвующих в химических превращениях. Анализ отдельных работ А. Лавуазье показал, что он постепенно переходит от уверенности в справед- [c.85]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]


    Подготовка руды состоит из ряда механических и физикохимических операций, содержание которых зависит от состава руды и формы химического соединения металла в ней. К таким операциям относят измельчение или укрупнение, классификацию и обогащение руды, а также превращение содержащего металл соединения в форму, пригодную для восстановления. Необходимость последней операции связана с тем, что восстановлению подвергаются преимущественно оксиды, реже галогени-ды металлов, поэтому все остальные соединения (сульфи п ы, гидроксиды) должны быть переведены в них. Это достигается воздействием на обогащенную руду высокой температуры или соответствующих реагентов  [c.8]

    Известен также способ активирования поверхности диэлектриков, исключающий применение драгоценных металлов. Активирование поверхности диэлектрика по этому способу заключается в обработке ее светочувствительным раствором с последующей фото- или термообработкой. Под воздействием светового или теплового импульса происходит разложение химических соединений активатора, не содержащего драгоценных металлов. В данном случае происходит реакция, в результате которой на поверхности диэлектрика образуются активные центры, содержащие медь и ее соединения они и катализируют восстановление меди из растворов химического меднения. [c.335]

    МЕТАЛЛОТЕРМИЯ — восстановление металлов из их соединений другими, химически более активными металлами при повышенных температурах. Впервые металлотермические реакции изучены и описаны Н. Н. Бекетовым в 1865 г. В зависимости от вида восстановителя различают алюминотермию, силикато-термию, магниетермию, кальциетермию и др. М. используют для производства некоторых цветных и редких металлов. [c.159]

    Минеральные вещества, содержащиеся в коксах, мало изменяются до температуры 1000° С. Отмечают главным образом обезвоживание алюмосиликатов, диссоциацию карбоната кальция и начало восстановления окислов и сернистых соединений железа. Но в диапазоне 1000—1500° С металлургический кокс с содержанием 10% золы теряет почти 8% своей массы, главным образом в форме окиси углерода, вследствие восстановления окислов железа, кремния и части извести и глинозема. Соответственно его теплотворная способность увеличивается почти на 400 кал/кг. Не удивительно, что эти все реакции возникают при температуре около 1500° С. Это объясняется образованием жидкой фазы, состоящей из смеси металлов, сернистых соединений и карбидов, где разбавление металлов уменьшает ее химическую активность и, таким образом, смещает равновесие [3]. [c.123]

    Можно предполагать, что при получении блестящего осадка разряд к-о-нов металла -происходит либо через пленку геля, либо из насыщенного раствора, пополняемого растворением геля, либо восстановлением ионов металла химического соединения, образующего пленку. [c.110]

    До середины 70-х годов XX века в качестве индикаторных электродов в основном применяли электроды из ртути и углеродных материалов, а также золота, серебра и платиновых металлов. Однако электрохимические реакции на таких электродах зачастую протекают необратимо и с большим перенапряжением. Кроме того, многие электроды имеют недостаточную коррозионную стойкость и не позволяют определять вещества, имеющие близкие потенциалы восстановления (окисления). В настоящее время стало очевидным, что разрешить указанные проблемы можно путем химического модифицирования электродной поверхности. При модифицировании на поверхность электрода наносят химические соединения или полимерные пленки, которые существенным образом изменяют его способность к вольтамперометрическому отклику перенос электронов протекает с высокой скоростью и с малым перенапряжением. В принципе понятие химически модифицированный электрод (ХМЭ) сейчас относят к любому электроду, поверхность которого обработана таким образом (химическими или физическими способами), что характер электрохимического отклика меняется. [c.478]

    Если величина аФ больше для компонента с более отрицательным потенциалом, потенциалы выделения металлов на катоде сближаются. Примером взаимодействия компонентов при образовании сплава являются олово — никель, олово — сурьма медь — цинк и медь — олово. Учитывая смещение равновесного потенциала в сторону положительных значений при образовании сплава типа твердого раствора или химического соединения и изменение перенапряжения при восстановлении ионов на поверхности осаждающегося сплава, уравнение (8) можно написать, в следующем виде  [c.255]

    Разложение химического соединения металла с образованием окисла, который затем может быть восстановлен до металла водородом, представляет собой важную стадию приготовления катализатора. Разложению может подвергаться соединение, находящееся внутри пор носителя, или чистый, без носителя, порошок металла. Нитраты тяжелых металлов гидратированы, и нх разложение — сложный процесс, о деталях которого известно немного. Достаточно отметить, что наиболее прочно связанная гидратная вода (находится в виде лиганда катиона тяжелого металла) выделяется одновременно с разложением нитрата, поэтому газообразные продукты разложения обычно представляют собой сложную смесь окислов азота, азотной кислоты, кислорода и воды. Хотя эти продукты в конце концов удаляются, они могут вызывать значительную коррозию носителя. Несмотря на то что безводный нитрат меди(II) летуч (возгоняется без разложения в вакууме при 420—470 К) и что другие безводные нитраты тяжелых металлов, как известно, характеризуются некоторой летучестью, это их свойство, как молено полагать, не играет существенной роли при получении катализаторов, так как окислы металлов образуются при разложении гидратированных нитратов в присутствии кислорода. [c.176]


    В конце XIX и в начале XX веков предприятия, производящие химически чистые реактивы, выпускали и некоторые химически чистые металлы. Они приготавливались разнообразными путями — электролизом, химическим восстановлением из окислов и химических соединений, специальной очисткой перекристаллизацией и другими способами. Степень их чистоты обычно не превышала 99,9—99,99%. Количество выпускаемых х. ч. металлов определялось потребностью научно-исследовательских и заводских лабораторий в основном для аналитических целей. Научный и технический уровень изготовления этих металлов в этот период отражен в книге Ван Аркеля .  [c.565]

    Перед нанесением гальванических покрытий поверхности диэлектрика придают электропроводные свойства. Это достигается различными способами путем химического восстановления металла из раствора его соли, электрохимического восстановления металла из окислов, введенных в состав поверхностного слоя диэлектрика или промежуточного покрытия, образования электропроводных соединений (фосфидов, сульфидов и др.), нанесения электропроводных эмалей, металлических покрытий конденсационным способом, натирания порошка графита или металла и т. д. Самое широкое применение в промышленности нашел способ химического восстановления металла — никеля, меди и в некоторых случаях—серебра. Он является сравнительно высокопроизводительным и не требует сложного оборудования. [c.58]

    Электрометаллургия — область, охватывающая всю совокупность электрохимических методов получения металлов из их химических соединений путем катодного восстановления, а также очистку металлов электролизом. [c.348]

    Все три металла химически малоактивны, активность уменьшается от меди к золоту. У ионов металлов заметна тенденция к сравнительно легкому восстановлению до металлического состояния. Низшие степени окисления неустойчивы у меди и обнаруживают склонность к окислению в высшие (4-1—> +2). Все три металла проявляют диамагнитные свойства. Большинство соединений их окрашено для всех металлов характерно образование комплексных соединений с анионами кислот, аммиаком, аминами и т. п. Оксиды меди, серебра и золота в воде почти нерастворимы и имеют слабоосновной характер. [c.203]

    Восстановление металлов из их соединений другими металлами, химически более активными, называется металлотермией. Эти процессы протекают также при повышенных температурах. [c.290]

    Помимо величины AG], и давления пара эффективность вакуумтермического восстановления лития, рубидия и цезия определяется и другими физико-химическими факторами, а именно способностью к образованию между восстановителем и восстанавливаемым металлом интерметаллических соединений, сплавов и твердых растворов гигроскопичностью исходного соединения восстанавливаемого щелочного металла и т. д. [c.386]

    Восстановление металлов из их соединений другими металлами, химически более активными, называется металлотермией. Эти процессы протекают также при высоких температурах. В качестве восстановителей применяют алюминий, магний, кальций, натрий, а также кремний. Если восстановителем является алюминий, то процесс называется алюминотермией, если магний — магний-т е р м и е й. Например  [c.232]

    Три металла — медь, серебро и золото — составляют группу 16 Бериодической таблицы элементов. Все эти металлы образуют соединения со степенью окисления +1, как и щелочные металлы, однако по свойствам они очень мало похожи на щелочные металлы. Последние очень мягки и легки, а в химическом отношении весьма активны, тогда как металлы группы меди обладают значительно большей твердостью а плотностью, а в химическом отношении настолько инертны, что встречаются в природе в свободном состоянии и их легко можно получить восстановлением из соединений иногда даже простым нагреванием. [c.557]

    Термодинамической мерой химической прочности соединения является (см. гл. IX) энергия Гиббса образования этого соединения из элементов Д(7. Чем более положительное значение имеет AG, тем менее устойчиво данное соединение, тем легче из него может быть восстановлен металл. Стандартные значения энергий Гиббса AG° образования оксидов, сульфидов (в расчете на 1 г-атом неметалла) при разных температурах Приведены на графиках рис. 1 и рис. 9. Чем ниже расположена графическая зависимость, тем более прочному соединению она соответствует. [c.221]

    Катализаторами первой группы являются переходные металлы, их соединения, полупроводники, которые проявляют высокую каталитическую активность в различных реакциях гидрирования, восстановления, окисления и др. При этом в ходе химического процесса электроны переходят от катализатора к реагирующим молекулам и наоборот, что и нашло отражение в названии данн(ш группы реакций и катализаторов. [c.5]

    Металлотермия — это процесс восстановления металлов из их соединений другими металлами, химически более активными, ири повышенной температуре. Иногда сюда включают также процессы восстановления неметаллами. [c.215]

    В настоящее время разработаны способы химического восстановления металлов из их соединений для получения пленок серебра, меди, золота, платины, никеля, кобальта и сурьмы. Кроме того, химическим путем готовят пленки сернистого свинца, сернистого серебра и т, п. [c.45]

    Нанесенные металлические катализаторы широко прш 1еняются в химической, нефтеперерабатывающей и нефтехимической промышленности [1]. Достаточно перечислить важнейшие процессы, в которых они используются, и их огромное практическое значение станет очевидным синтез аммиака конверсия углеводородов с водяным паром в синтез-газ риформинг гидрокрекинг гидроочистка гидро-деалкилирование дегидроциклизация изомеризация парафинов и цикланов гидроизомеризация олефинов, диенов и ароматических углеводородов изомеризация этилбензола в ксилолы восстановление разнообразных органических соединений окисление синтез Фишера—Тропша и др. Исследование металлсодержащих контактов представляет большой интерес для теории катализа, создания новых полифункциональных каталитических систем и разработки новых каталитических процессов. Свойства таких катализаторов, как известно, существенно зависят от состояния и дисперсности металлического компонента [2—6]. И не случайно, когда были синтезированы и стали доступны кристаллические алюмосиликаты (цеолиты), их способность к ионному обмену и иысикая обменная емкость, наличие кристаллической структуры с однородными порами молекулярных размеров были использованы для получения катализаторов-, содержащих высокодиспергированные металлы, обладающие молекулярно-ситовой селективностью и полифункциональным действием. Уже первые исследования, выполненные Рабо и др. [7, 8], Вейсцем и др. [9, 10], показали большую перспективность металлцеолитных систем для катализа, нефтепереработки, нефтехимии. Интерес к этим системам особенно возрос после опубликования результатов изучения внедрения атомов платины в цеолитную структуру, ее дисперсности и установления высокой стойкости к отравлению серой ионообменного катализатора 0,5% Р1-СаУ [И]. [c.154]

    После сушки и перед восстановлением катализаторы часто (но не всегда) подвергают высокотемпературной обработке (прокаливанию). Во время прокаливания и в меньшей степени в процессе сушки химические соединения металлов на носителе разлагаются, поэтому, чтобы получить максимальную конечную дисперсность металла, необходимо выбирать такие соединения, которые разлагаются и восстанавливаются при возможно более низких температурах. [c.172]

    Простой метод приготовления катализаторов состоит в разложении терми чески неустойчивых химических соединений. Для этой цели в качестве исход ных солей предпочитают, как правило, использовать нитраты или хлориды Сульфаты обычно избегают применять вследствие высоких температур разло жения. Другие соли металлов, например фосфаты, бромиды, йодиды и т. п. не всегда доступны и сравнительно дороги. Особый интерес представляют соли органических кислот, например формиаты, оксалаты и ацетаты. Эго связано не только с тем, что они разлагаются при сравнительно низких температурах существенной особенностью этих солей является часто происходящее самопроизвольное восстановление образующихся окислов до металлов, представляющее собой необходимый этап приготовления некоторых катализаторов, например никелевых катализаторов гидрирования. [c.11]

    Рассмотрим механизм восстановления металлов в кислой и щелочной средах без наложения электрического тока на примере химического никелироаания (табл. 41). На каталитический процесс химического восстановления влияют все компоненты водного раствора. Ион водорода гидратирован, причем среди его гидратов преобладает ион 4Н20 Н . Имеются сведения о существовании весьма стабильной частицы 3 НгО ОН — гидратированного гидроксил-иона (Р. Белл). Для упрощенного написания этих ионов воспользуемся выражениями НгО Н (для протона) и НгО ОН (для гидроксил-иона). Реагирующие вещества поступают на катализатор диффузией и адсорбируются. Адсорбированные ионы водорода или гидроксила взаимодействуют с буферными соединениями раствора, как бы высвобождая молекулу воды для взаимодействия с восстановителем. [c.66]

    Использование равновесных плазмохимнческих процессов позволяет в промышленных масштабах получать ацетилен, этилен и технический водород пиролизом углеводородов, пигментный оксид титана (IV)—переработкой тетрахлорида титана в струе диссоциированного кислорода при высокой концентрации в ней атомного кислорода, а также металлы и металлиды (т. е. химические соединения двух или нескольких металлов)—восстановлением оксидов и хлоридов в водородной плазме. [c.97]

    Металлотермия — восстановление металлов из их соединений другими металлами, химически более активными, при повышенных температурах, напр, алюминотермия, где восстановителем ярляется алюминий. Как восстановители применяют Si (обычно в виде ферросилиция), Са, Ва, Mg, Na и др. М. используют для производства некоторых цветных и редких металлов. [c.82]

    В компактном состоянии металлы весьма устойчивы к действию различных реагентов. Так, ниобий и тантал нерастворимы во всех кислотах, кроме плавиковой. Ванадий растворяется не только в HF, но и в тех кислотах, которые являются сильными окислителями в HNO3, в царской водке. Растворы щелочей на них не действуют, однако расплавленные щелочи постепенно их растворяют. В виде порошков ванадий, ниобий и тантал при нагревании энергично реагируют с кислородом, хлором и серой. Реакционноспособнее среди них ванадий. Наибольшее число известных химических соединений образует ванадий,наименьшее — тантал. По этой причине восстановление окислов и других [c.3]

    Термическое восстановление металлов из их соединений применяется тогда, когда необходимо получить иск лючительно плотное соединение металла с непроводником. При использовании паст с последующим вл<иганием можно покрывать не только всю поверхность сплошь, но и частично, по заданному рисунку или чертел<у. Термическое восстановление более сложный процесс, чем описанные выше механический и химический процессы, и требует специального оборудования и квалифицированной рабочей силы. [c.40]

    Восстановление многих химических веществ, неосложненное побочными реакциями, можно изучать полярографически, снимая соответствующие юльтамп япле кривые. Потенциал полуволны часто находится в близком соответствии со стандартным потенциалом восстановительной полуреакции [25]. В некоторых случаях необходимо делать поправки на /Л-падение в ячейке. Например, если в результате полуреакции образуется металл, растворимый в ртути капельного электрода, то при определении потенциала металлического электрода необходимо делать поправку на разность потенциалов между чистым металлом и амальгамой. Потенциал полуволны обычно измеряется по отнощению к каломельному электроду сравнения и поэтому включает потенциал жидкостного соединения. Из полярографических измерений легко получить потенциалы многих простых и сложных окисли-тельно-восстановительных полуреакций, но точность их обычно не превышает 2-3 мВ. [c.34]


Смотреть страницы где упоминается термин Восстановление металлов из их руд и химических соединений: [c.393]    [c.8]    [c.93]    [c.153]    [c.321]    [c.257]    [c.61]    [c.247]    [c.38]    [c.93]    [c.506]   
Смотреть главы в:

Вакуумные аппараты и приборы химического машиностроения -> Восстановление металлов из их руд и химических соединений

Вакуумные аппараты и приборы химического машиностроения Издание 2 -> Восстановление металлов из их руд и химических соединений




ПОИСК





Смотрите так же термины и статьи:

Восстановление металлами

Металлы соединения

Металлы химические

Химическое соединение



© 2025 chem21.info Реклама на сайте