Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия водород и его соединения

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Органическая химия изучает соединения углерода, хотя, положим, углекислый газ - неорганическое вещество. Далее выяснилось, что в основном это углеводороды С Н , затем было уточнено, что основу органических веществ составляют элементы - органогены. Это, кроме углерода и водорода, кислород, азот, сера, галогены, фосфор. Кроме этих основных атомов, в состав органических соединений входят почти все элементы периодической системы, но в малых количествах. А основу составляют все же углерод и водород. Но вот что поразительно. Сейчас известно свыше 20 млн. химических соединений, из них раз в сто меньше неорганических. Получается, что фактически два элемента [c.11]

    Учебник Введение к полному изучению органической химии открывается главой Общие понятия , в которой автор прежде всего подводит читателя к определению предмета органической химии. А. М. Бутлеров показывает при этом несостоятельность виталистических представлений, обосновывавших выделение органической химии особым происхождением органических веществ. Он отмечает далее, что отличительным признаком органических веществ не может служить и их легкая изменяемость органическое вещество нафталин устойчиво при температуре красного каления, а неорганическая перекись водорода пли бертолетова соль ра зла-гаются при небольшом повышении температуры. Между органическими и неорганическими веществами нельзя провести и резкой грани в составе хотя чаще всего в органических соединениях встречаются углерод, водород, кислород, азот, но в них можно встретить также галогены, серу, фосфор, мышьяк, ртуть, олово, свинец. Такие факты заставляют предполагать, — пишет А. М. Бутлеров, — что все элементы способны находиться в составе органических веществ . В этих его словах содержится предвидение грядущего бурного развития химии элементоорганических соединений. Рассмотрев и отбросив критерии происхождения, свойств и состава, А. М. Бутлеров логически подводит читателя к выводу, что органическая химия — это химия углеродистых соединений. [c.19]

    Объектом изучения органической химии являются соединения углерода. Вещества органической природы обязательно содержат в своей молекуле углерод и водород, в этом их основное отличие от неорганических соединений. [c.142]

    Таким образом, вопреки довольно распространенному мнению чисто ионных соединений с идеальной ионной связью на самом деле не существует . Между тем принято считать, что химическая связь у подавляющего большинства неорганических соединений имеет ионный характер. Объясняется это двумя исторически сложившимися причинами. Во-первых, почти все химические реакции исследовались в воднОй среде и представляли, по существу, ионные реакции. В то же время поведение вещества в водных растворах коренным образом отличается от его свойств в отсутствие воды. Так, соляная кислота относится к числу сильнейших электролитов растворенный в воде хлорид водорода полностью диссоциирует на ионы водорода и хлора. Основываясь на этом факте, можно было бы допустить ионную связь в молекуле НС1. Однако безводный хлорид водорода представляет собой почти неионное соединение, в котором эффективные заряды водорода и хлора соответственно равны +0,17 и -0,17. Во-вторых, в свете учения об ионной связи в неорганической химии укоренились представления о положительной и отрицательной валентности (электровалентности). Даже если невозможны отдача и присоединение электронов, нередко подразумевали электровалентность, т.е. ионную связь. Это усугублялось еще и тем, что в неорганической химии исключительно важную роль играет электронная теория окислительно-восстановительных реакций, постулирующая переход электронов от восстановителей к окислителям. При этом степень окисления полностью отождествлялась с электровалентностью и для удобства подсчета числа отдаваемых и присоединяемых электронов заведомо неионные соединения рассматривались как вещества с ионной связью. Между тем понятие степени окисления не имеет ничего общего [c.64]


    Все специфические особенности органических соединений проявляют уже так называемые углеводороды — вещества, состоящие только из углерода и водорода. Но, как мы увидим дальше (стр. 35, 36), все более сложные органические соединения можно рассматривать как производные углеводородов. На это еще обратил внимание известный немецкий ученый-материалист К- Шорлеммер (1871 г.), который предложил органическую химию характеризовать как химию углеводородов и их производных. Такое определение наиболее правильно отражает особенности органической химии оно указывает, что ее предметом является более высоко организованная материя, по сравнению с неорганической химией, предметом которой являются элементы и их соединения. [c.13]

    Монография посвящается применению спектроскопии ядерного магнитного резонанса в неорганической химии. Излагаются основы метода ЯМР и области его применения, главным образом для установления структуры химических соединений. Описывается методика анализа спектров ЯМР и оценки полученных результатов. Особенно подробно приводятся результаты, относящиеся к соединениям, содержащим водород, бор, фтор и фосфор. Данные для всех исследованных неорганических соединений собраны в таблицы, содержащие величины химических сдвигов и константы спин-спинового взаимодействия, благодаря чему книга может служить справочником. [c.303]

    Особая роль кислорода в химии. В становлении и развитии классической неорганической химии неоценимая роль принадлежит кислороду. Еще Берцелиус утверждал, что кислород — это та ось, вокруг которой вращается химия. Обусловлено это двумя причинами. Во-первых, чрезвычайно большая распространенность и исключительная реакционноспособность кислорода определяют многообразие форм его соединений. Во-вторых, классическая неорганическая химия в основном — это химия водных растворов. Другими словами, она представляет собой химию самого распространенного и самого главного соединения кислорода — оксида водорода. Поэтому многие основополагающие понятия, такие, как валентность по кислороду, окислительное число, окисление, горение, кислоты и основания, соли и т. д., были сформулированы применительно к кислороду и его важнейшим соединениям. Больше того. До 1961 г. применялась кислородная шкала атомной единицы. массы. [c.312]

    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]

    Первоначально присутствие воды в неорганических соединениях определяли по наличию пара, выделяющегося при нагревании исследуемого образца. Поэтому логически естественным критерием ее количества оказалась убыль веса вещества в процессе его прокаливания до температуры, чуть ниже температуры его разложения. Принятая в неорганической химии запись формул валового состава соединений в виде суммы окислов привела к тому, что все О Н -группировки, входящие в состав этих соединений, записывались в этих формулах тоже как некоторое количество окиси водорода, т. е. молекул HjO (n-HjO). [c.8]

    В областях синтеза новых перекисных соединений, применения методов меченых атомов и физико-химического анализа к изучению их свойств, исследования перекисных комплексов, каталитического разложения растворов перекиси водорода, советские ученые занимают передовые позиции. Однако недостаточно развиваются экспериментальные и теоретические работы по химической термодинамике перекисных соединений и процессов, протекающих с их участием. Имеется значительное отставание в области аналитической химии перекисных соединений и в рентгеноструктурных исследованиях. Область реакционной способности неорганических перекисных соединений глубоко не затронута ни советскими ни зарубежными учеными. Слабо развиваются исследования по кинетике. [c.9]

    Водород, подобно углероду и кислороду, образует миллионы соединений. Подавляющее большинство их принадлежит к числу органических соединений. Химия органических соединений обсуждается далее в главах 21—33. Поэтому в данной главе мы сосредоточим внимание на основных типах неорганических соединений, образованных водородом (гидриды, кислоты, щелочи и др.). [c.160]


    Почти все отравляющие вещества, имеющие военное значение, являются органическими соединениями. Кроме двойной соли аммонийбериллийфторида, которую можно использовать для заражения воды, мышьяковистого и фосфористого водородов, обладающих общетоксическим действием, но не применимых вследствие неподходящих физических свойств, не имеется других не органических токсичных соединений, пригодных для военных целей. В настоящее время трудно провести границу между органической и неорганической химией. Металлоорганические соединения занимают промежуточное положение, и среди них имеются соединения, которые могут иметь определенное военно-химическое значение, — это некоторые карбонилы металлов и тетраэтилсвинец. Для большинства органических ОВ, нашедших применение в качестве боевых химических веществ, характерно наличие гетероатомов. Сильнодействующие отравляющие вещества (а только такие здесь и рассматриваются), кроме некоторых ядов животного и растительного мира, таких, как кантаридин или окись углерода, в редких случаях состоят только из трех главных элементов — углерода, водорода и кислорода. Обычно в них входят элементы, наличие которых и придает им токсические свойства прн действии на теплокровные организмы фтор, хлор, сера, азот, фосфор и мышьяк. Те элементы, которые входят в состав металлоорганических соединений, здесь не упомянуты. [c.33]

    Соединения включения широко известны и в неорганической химии Это кластеры, соединения внедрения водорода (Рс1), кислорода (Тх, ЫЬ), азота (сталь), углерода (сталь), соединения включения стали, графита, алюмосиликатов (цеолиты) и др [c.61]

    БОРОВОДОРОДЫ (гидриды бора, бо-раны) — соединения бора с водородом состава В Н ( 4 (напр., В2Н5) и В,гН д (напр., В4НЮ). Строение Б. остается одной из нерешенных проблем неорганической химии. Считают, что наряду с гомеополярными связями в молекулах Б. важную роль играют водородные связи. [c.46]

    БИ... 1. Составная часть названий соединений с двумя одинаковыми группами атомов. 2. В неорганической химии-приставка к названию аниона, обозначающая, что в его состав входит атом водорода, способный замещаться на металл. [c.56]

    В природе встречаются все типы стабильных ядер. Их относительная распространенность может изменяться в широких пределах — в 10 раз. Определение распространенностей изотопов было проведено рядом авторов, и полученные результаты использовались для объяснения процесса образования элементов [16, 1968] подобные измерения большей частью осуществлялись в области спектро-аналитических астрономических наблюдений и неорганической химии. Чувствительность масс-спектрометрического анализа образцов, приготовленных в удобной для изучения форме, высока, однако необходимо признать, что этот метод не является во всех случаях лучшим или наиболее чувствительным. Часто обычные химические методы оказываются более приемлемыми. Например, наличие некоторых химических соединений в воздухе легче устанавливается при пропускании больших количеств образца через соответствующий реагент при этом нет необходимости проводить обогащение для повышения чувствительности обнаружения примесей. Радиоактивные изотопы с гораздо большей чувствительностью обнаруживаются путем регистрации излучения, чем методом масс-спектрометрии. Так, например, в мл тяжелой воды, полученной из 13 ООО т поверхностных вод Норвегии, была определена молярная доля трития, равная 3,2-10 , что позволило установить мольную долю трития в водороде этих вод, равную 10 [797]. Масс-спектро-метрический метод не обладает подобной чувствительностью. Однако преимущества его в определении относительной распространенности изотопов элементов неоспоримы. В настоящей главе будут рассмотрены подобные измерения, а также измерения относительных количеств различных положительных осколочных ионов в масс-спектрах химических соединений. Применение метода анализа изотопного состава рассмотрено в конце настоящей главы, применение в химическом анализе обсуждено в гл. 8. [c.70]

    Из области неорганической химии примером соединения, содержащего атомы водорода разного типа, является фосфористая кислота Н3РО3, выяснение строения которой Николай Александрович Меншуткин (1842—1907) избрал темой своей магистерской диссертации О водороде фосфористой кислоты, не способном к металлическому замещению при обыкновенных условиях для кислот (1866). [c.43]

    Основные научные исследования относятся к неорганической химии. Исследовал соединения ниобия, тантала, молибдена, вольфрама, особенно их галогениды и оксига-логениды. Получил (1866) ниобий восстановлением его хлорида водородом. Открыл (1888) геометрическую изомерию некоторых неорганических комплексов, установив, что комплексные соединения [Pt(R2S)5] l2, где R —органический радикал, могут существовать в виде двух изомеров — цис и транс. Провел анализ многих минералов, в частности монацита, ильменита, танталита, ниобита, эук-сенита. Вслед за А. М. Бутлеровым выступил в поддержку представления о переменной валентности элементов, объяснив ее полтям и неполным использованием единиц сродства. [22, 23, 324, 336] [c.61]

    Качественный элементарный анализ органических веществ. При исследовании качественного состава чистых органических соединений чаще всего приходится встречаться с небольшим числом элементов. Это — углерод, водород, кислород, азот, сера, галоиды и фосфор. Открытие всех этих элементов, кроме водорода и кислорода, основано на переводе их в растворимые в воде ионизирующиеся соединения, анализируемые с применением соответствующих реакций, хорошо известных из неорганической химии. Водород же открывается в виде воды. [c.36]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Следует еще раз подчеркнуть, что схема Косселя — это чрезвычайно грубое упрощение. Связь О—Н не является ионной, и расстояние между центрами атомов кислорода и водорода никогда не равно 1,32 А, ион водорода утоплен в электронных оболочках кислорода (см. стр. 209). Кроме того, в случае высоких степеней окисления связь между-элементом Э и кислородом также не является ионной, и степень окисления, как указывалось выше, не соответствует заряду иона элемента. Однако несмотря на все это, схема Косселя в большинстве случаев приводит к совершенно правильным качественным выводам при сопеставлении сходных соединений, Скажем, гидроксидов элементов, принадлежащих к одной и той же группе периодической системы. Эта неожиданная применимость столь грубого построения обусловлена тем, что даже в случае связей, сильно отличающихся от ионных, их прочность растет с уменьшением межатомных расстояний (а следовательно, и вычисляемых из ни радиусов ионов ) и с увеличением степени окисления. Часто степень окисления приблизительно показывает число электронов данного атома, принимающих участие в образовании химической связи. Чем больше электронов участвует в образований связей, тем прочнее связи. Поэтому схема Косселя полезна для первоначальной общей ориентировки в многообразном материале неорганической химии. [c.89]

    Угольную кислоту (Н2СО3) и ее соли изучают в курсе неорганической химии некоторое же ее производные относятся к органическим соединениям, В нашем кратком курсе мы ознакомимся с производными угольной кислоты в разделе оксикислот, так как иногда угольную кислоту рассматривают как продукт замещения водорода в муравьиной кислоте на гидроксил угольная кислота представляет собой как бы оксимуравьиную кислоту [c.214]

    Факты, говорившие о том, что процесс химического взаимодействия зависит от количества действующих масс, поступали из области как органической, так и неорганической химии. Работы Г. Розе (1851), Р. Бунзена (1853), Д. Глэдстона (1855) дали материал (в основном по реакциям двойного обмена) для доказательства существования обратимых химических превращений и возможности изменения направления реакции путем подбора соответствующих условий ее протекания. В 1857 г. А. Сент-Клер Девиль 2 доказал, что разложение химических соединений начинается ниже температуры их полного разложения. В статье О диссоциации или самопроизвольном разложении веществ под влиянием тепла (1857) Сент-Клер Девиль показал, что под влиянием температуры происходит разложение водяного пара на кислород и водород при температуре плавления платины 1750°С и при температуре плавления серебра 950°С. [c.323]

    Номенклатура водородсодержащнх соединений, как н других соединений неорганической химии, исторически сложилась по двум направлениям. Первое (ид-система) применяется для соедииеиий, у которых известны зарядиость входящих в них элементов. По данной системе в случае отрицательно заряженных водорода и кислорода к наименованию более отрицательно заряженного элемента прибавляется суффикс ид , например гидрид литня, оксид водорода. Соединения водорода с элементами, стоящими слева от водорода в ряду электроотрнцательности, будут называться термином гидрид . [c.5]

    Аммониевые соединения — 1) в неорганической химии — соли, в которых электроположительной составляющей является аммоний NN 01 (МН ) зЗО 2) в органической химии — производные аммония, в котором атомы водорода замещены на органические радикалы. В зависимости от числа радикалов различают первичные [Р—МНз]Х", вторичные [R,R2NH2] "X , третичные [Н РзРзМН] "X и четвертичные [Р,Р2РзРЯ Х.  [c.24]

    Отдельным вопросам химии перекисных соединений, например, были посвящены совещания в 1953 г. в Филадельфии по химии надпе-рекисей, в 1960 г. в Броунском университете по механизму образования перекисей и в Лондоне в 1961 г. по жидкофазному окислению и перекиси водорода. Первое совещание, созванное Институтом общей и неорганической химии им. Н. С. Курнакова АН СССР в 1956 г., также было посвящено узкому разделу химии перекисных соединений. [c.6]

    Конон Иванович Лисенко (1836—1903) — профессор Горного института в Петербурге, учитель выдающихся химиков акад. Н. С. Курнакова, В. Ф. Алексеева, И. Ф. Шредера и др. —изложил интересные критические соображения по поводу учения о металлическом водороде в курсе Руководство к неорганической химии, теоретической, описательной и прикладной . Например, он видит противоречие в том, что тиогидрат калия КН5 следует признать кислотой по признаку наличия металлического водорода, хотя по свойствам это соединение стоит ближе к щелочам. [c.44]

    Научные работы в области химии относятся к неорганической химии и электрохимии, основоположником которой он является. Открыл (1799) опьяняющее и обезболивающее действие закиси азота и определил ее состав. Изучал (1800) электролиз воды и подтвердил факт разложения ее на водород и кислород. Выдвинул (1807) электрохимическую теорию химического сродства, согласно которой при образовании химического соединения происходит взаимная нейтрализация, или выравнивание, электрических зарядов, присущих соединяющимся простым телам при этом чем больше разность этих зарядов, тем прочнее соединение. Путем электролиза солей и щелочей получил (1808) калий, натрий, барий, кальций, амальгаму стронция и магний. Независимо от Ж. Л. Гей-Люссака и Л. Ж- Тенара открыл (1808) бор нагреванием борной кислоты. Подтвердил (1810) эле,меитарную природу хлора. Независимо от П- Л. Дюлонга создал (1815) водородную теорию кислот, Одно-времеино с Гей-Люссаком доказал (1813—1814) элементарную природу иода. Сконструировал (1815) безопасную рудничную лампу. Открыл (1817—1820) каталитическое действие платины и палладия, Получил (1818) металлический литий. [c.180]

    Научные исследования охватывают важнейщие проблемы общей и неорганической химии и технологии неорганических материалов. В своих первых работах изучил (1930—1932) процесс абсорбции окиси углерода растворами медноаммиачных солей, выяснил механизм образования и разрушения комплексных соединений окиси углерода с карбонатами и формиатами аммиакатов меди. Предложил (1940-е) способы оптимизации подготовительных процессов синтеза аммиака н азотной кислоты усовершенствовал методы получения и очистки водорода и азотоводородных смесей изучил механизм абсорбции окислов азота. Исследовал (1950—1960-е) гидродинамику, массо- и теплопередачу в насадочных и пленочных колонных аппаратах вывел уравнения для расчета коэффициентов гидравлического сопротивления при ламинарном и турбулентном течении газа в насадочных колоннах. Совместно с сотрудниками выполнил (1950—1970-е) работы, направленные на развитие теоретических основ химической технологии и интенсификацию технологических процессов разработал и усовершенствовал многоступенчатые методы разделения посредством абсорбции, хроматографии, ионного обмена, кристаллизации и сублимации, молекулярной дисти.ч-ляции. Разработал метод расчета активной поверхности контакта фаз. Создал и реализовал в промышленности (1960—1972) методы [c.187]

    Несмотря на то что фотохимические реакции [1] имеют большое значение в природе (ассимиляция), в технике [5] (фотография) и в научном исследовании (строение атомов и молекул), в препаративной неорганической химии их применяют ограниченно. Это связано главным образом с тем, что большинство неорганических соединений в противоположность многим органическим веществам слабо абсорбирует видимый или даже ультрафиолетовый свет. Выход при фотохимических реакциях обычно очень незначителен часто возникают свободные радикалы или атомы, из которых вновь образуются исходные вещества. Все же известно значительное число реакций, в которых квантовый выход ф [6] достигает значения, равного 1, или, как, например, при цепных реакциях, существенно больше 1. Однако, вообще говоря, только повышение температуры является простым и эффективным средством для доведения до конца тех же реакций. Применение света имеет преимущество только тогда, когда необходимо активировать при возможно более низкой температуре один компонент реакционной смеси без заметного влияния на другие. Поскольку возбужденная молекула сама не абсорбирует света, могут быть применены другие молекулы или атомы, например пары ртути световая энергия, поглощенная ими, переносится часто на другие молекулы. Например, Нг в присутствии паров ртути при облучении светом 2537 А дает все реакции, характерные для атомарного водорода [7]. [c.546]

    Важнейшим соединением водорода является вода Н О. Наряду с ней существует еще одно кислородное соединение водорода, перекись водорода HgOj. В данной главе будут рассмотрены только эти соединения водорода соединения его с остальными элементами будут описаны при обсуждении каждого элемента. Однако здесь придется изложить еще два особо важных класса водородных соединений — кислоты и основания — и вместе с тем коснуться природы электролитов, к которым относятся кислоты и основания. Последним в области неорганической химии придается особо важное значение. [c.67]


Смотреть страницы где упоминается термин Неорганическая химия водород и его соединения: [c.181]    [c.48]    [c.248]    [c.7]    [c.85]    [c.2]    [c.13]    [c.14]    [c.21]    [c.30]    [c.9]    [c.485]    [c.533]    [c.662]    [c.663]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.14 , c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Водород соединения

Химия водорода

Химия неорганическая



© 2024 chem21.info Реклама на сайте