Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основность оксониевых оснований

    Заметим в заключение, что кислотно-основные превращения не сопровождаются изменением степени окисления атомов какого-либо из компонентов превращения. Кислотами являются соединения, в которых атом Н связан с электроотрицательным элементом, чаще всего элементом шестой или седьмой группы главной подгруппы, т. е. уже имеет степень окисления +1, как и образующийся протон. Следовательно, не изменяется степень окисления образующегося сопряженного основания. В этом можно убедиться на примере любой кислоты. В уксусной кислоте кислород ОН-группы имеет степень окисления 2, поскольку связан с двумя атомами —С и Н, имеющими меньшую электроотрицательность. В ацетат-ионе тот же кислород связан с атомом С и, кроме того, имеет заряд, что в сумме также дает степень окисления —2. Это же относится и к частице, принимающей протон. В ионе оксония, образованном из молекулы воды при присоединении протона, степень окисления каждого атома водорода равна -f 1, поскольку они связаны с атомом О а степень окисления атома кислорода, несущего положительный заряд и связанного с тремя менее электроотрицательными атомами Н, равна 4-1—3=—2, как и в исходной воде. В то же время, как видно на примере окисления перманганатом, окислительно-восстановительные реакции могут сопровождаться кислотно-основными превращениями. [c.293]


    Исключительна роль водорода и в химическом отношении. Если атомы всех остальных элементов (кроме химически инертного гелия) под валентной оболочкой имеют электронный остов предыдущего благородного газа и размеры их положительных ионов не намного меньше размеров нейтральных атомов, то ион Н представляет собой просто протон, размеры которого примерно в 10 раз меньше размеров атома. Поэтому положительно поляризованный атом водорода обладает исключительно сильно выраженным поляризующим действием, что является одним из основных мотивов в химии этого элемента, С этим связаны такие особые свойства элемента, как образование водородных связей, "ониевых" соединений (оксоний, аммоний и т.п.), протолитические реакции, протонная (бренстедовская) концепция кислот и оснований и пр. [c.292]

    Однако в кислотно-основных системах поведение жидкого аммиака имеет одно существенное отличие от воды. Больщая доступность неподеленной электронной пары аммиака облегчает координацию этой молекулой протона с образованием иона аммония ННГ. Это отражается в большем сродстве к протону у аммиака. Таким образом, ион аммония образуется в жидком аммиаке легче, чем ион оксония в воде, так что протонные кислоты диссоциируют в жидком аммиаке легче, а следовательно, являются более сильными кислотами. Например, ацетат аммония в жидком аммиаке —сильная кислота, хотя уксусная кислота в водном растворе только слабая кислота. Ацетамид — только слабое основание в водном растворе, однако в жидком аммиаке он проявляет кислотные свойства [c.327]

    Ион водорода перешел от очень слабого основания (HS07) к более сильному основанию (Н2О) с образованием иона оксония (НзО" ) основные свойства обоих соединений обусловлены, конечно, неподеленной парой электронов, которая может связывать ион водорода. Спирт также содержит атом кислорода с неподеленной парой электронов и его основность сравнима с основностью воды. Первую стадию предложенного механизма можно наиболее вероятно представить следующим образом  [c.161]

    Свободные аминокислоты и входящие в состав белков основные и кислотные остатки являются электролитами. Функционируя в водной среде, они диссоциируют на ионы. Рационально пользоваться следующим определением Бренстеда кислота — молекула, от которой отщепляется протон основание — иолеку-ла, присоединяющая протон. Сам растворитель — вода — выступает как кислота в реакции НаО ОН и как основание в реакции НаО 4-Н+Н3О+ (ион оксония). [c.61]


    Растворение в воде слабой кислоты, например уксусной НАс, не сводится просто к НАс Н +Ас, а является реакцией НАс+НгО Н,0 +Ас . При этом НАс является кислотой — донором протона, тогда как НаО является основанием — акцептором протона. Поскольку происходит и обратная реакция, ион оксония является кислотой, а ацетатный ион — основанием. Уксусная кислота и ион ацетата называются сопряженной кислотно-основной парой, так же как и вода и ион оксония. Кислотами или основаниями могут быть как нейтральные молекулы, так и катионы н анио)1ы. Помимо рассмотренных выше равновесий, ЫН и Н304 могут считаться примерами кислот, а Ре(Н20)40Н — примером основания (см. стр. 291). Некоторые молекулы илн ионы могут и акцептировать и отдавать протоны они называются амфотерными. Наглядными примерами такого поведения являются вода и ион бисульфата. [c.206]

    Соли сульфония образуются намного легче, чем соли оксония, однако простые серусодержащие основания, по-видимому, значительно менее основны по отнощению к протонным кислотам, донорам водородной связи и большинству льюисовских кислот, чем их кислородные аналоги. Точные [c.261]

    Колли и Тикль [6] в статье, опубликованной в 1899 г., предположили, что соли оксония подобны солям аммония. Они говорят об основаниях пиридинового ряда и даже о гипотетическом основании гидроокиси оксония ОНдОН . Ганцш отметил основное действие воды, метилового спирта и диметилового эфира в безводной серной кислоте. В статье, опубликованной в 1912 г., Фолин и Фландерс сообщили о титровании большого числа кислот этилатом и амилатом натрия в качестве оснований в таких растворителях, как бензол, толуол, хлороформ и четыреххлористый углерод. Авторы заметили, что слабые кислоты, которые не поддаются титрованию в воде, дают превосходные результаты в органических растворителях (даже сероводород). Они нашли, что их растворы кислот практически не проводят тока, и пришли к заключению, что в этих растворах присутствует очень мало ионов (это заключение было подкреплено работой Фуоса и Крауса [9]). Двуокись [c.10]

    Бинарное соединение. Бесцветная жидкость (слой более 5 м толщиной окращен в голубой цвет), без вкуса и запаха. Молекула имеет строение дважды незавершенного тетраэдра [ 0Н2] (sp -гибридизация). Летучее вещество, термически устойчивое до 1000 °С. Твердая вода (лед) легко возгоняется. Природная вода по изотопному составу водорода в основном HgO с примесью Н НО, по изотопному составу кислорода в основном Н2 0 с примесью Нг О и Н2 О. В малой степени подвергается автоионизированию (автопротолизу) до Н+ или, точнее, до Н3О+ и ОН . Катион оксония Н3О+ имеет строение незавершенного тетраэдра [ 0(Н)з] (sp -гибридизация). В водном растворе ион НзО" — самая сильная кислота, ион ОН — самое сильное основание, вода — самая слабая кислота (по отношению к иону ОН ) и основание (по отношению к иону Н3О+). Жидкая вода ассоциирована за счет водородных связей до (НгО) (при комнатной температуре л = 4). Образует кристаллогидраты со многими солями, аквакомплексы — с катионами металлов. Реагирует с металлами, неметаллами, оксидами. Вызывает электролитическую диссоциацию кислот, оснований и солей, гидролизует многие бинарные соединения и соли. Подвергается электролизу в присутствии сильных электролитов. Почти универсальный жидкий растворитель неорганических веществ. Для химических целей природную воду очищают перегонкой (дистиллированная вода), для промышленных целей умягчают, устраняя временную и постоянную жесткость (см. 41 , 43 ), или полностью обессоливают, пропуская через иониты в кислотной Н -форме и щелочной ОН -форме (ионы солей осаждаются на ионитах, а ионы Н + и ОН переходят в воду и взаимно нейтрализуются). Питьевую воду обеззараживают хлорированием (старый способ — см. 67 ) или озонированием (современный, но дорогой способ озон не только окисляет вредные примеси подобно хлору, но и увеличивает содержание растворенного кислорода — см. 71 ). [c.153]

    Выбор состава мономерной смеси определяется несколькими факторами. Во-первых, в составе мономерной смеси должны быть мономеры, обеспечивающие растворимость полимера в воде. К таким мономерам относятся соединения, содержащие кроме двойных связей гидрофильные группы или связи, отличающиеся друг от друга величиной константы ионизации или числом гидратации. Значение константы ионизации заметно изменяется при переходе от мономеров с ионогенными функциональными группами и связями к мономерам с неионогенными группами и связями. Практически все ненасыщенные кислоты и основания имеют сравнительно невысокие значения константы ионизации (см. приложение, табл. 2) и относятся соответственно к слабым кислотам или основаниям. Значения р/(а этих соединений находятся в пределах от 3 до 6 для кислот и от 9 до 11 для оснований. Мономеры, содержащие гидроксильные группы, являются амфотерными соединениями с очень слабо выраженными как кислотными, так и основными свойствами, и имеют константы ионизации /С=10 —10- . Мономеры с амидной группой представляют собой очень слабые кислоты, более слабые, чем вода. Наличие в молекуле мономера простой эфирной связи со свободной парой электронов определяет их слабые основные свойства, они способны присоединять катион, образуя ион оксония. Для придания полимерной молекуле способности растворяться в воде наиболее целесообразно использовать мономеры с ионогенными (карбоксильными или аминными) группами. Так, для сополимеров акриловой или метакриловой кислот граница растворимости в воде находится при массовом содержании карбоксильных групп 5—7 %, в то время как для омыленного поливинилацетата (сольвара) массовое содержание гидроксильных групп должно составлять не менее 25—30 %. Для полиэлектролитов растворимость в воде повышается с увеличением суммарной плотности заряда полимерного компонента, которая связана с числом ионогенных групп и величиной их константы ионизации. Степень ионизации увеличивается при [c.11]



Смотреть страницы где упоминается термин Основность оксониевых оснований: [c.283]   
Введение в теоретическую органическую химию (1974) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Оксония-ион



© 2024 chem21.info Реклама на сайте