Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Токсичность хрома

    Токсичность хрома обусловлена температурой воды, значением pH, временем контакта и валентностью. Предлагаются следующие нормы безопасного содержания хрома в воде для рыбы — 0,5 мг/л, для микроорганизмов — 5 мг/л, при использовании для нужд водоснабжения — 0,5 мг/л. [c.203]

    Радикальным решением проблемы ликвидации шлама является разработанный УНИхимом химико-металлургический способ переработки хромита. Способ позволяет исключить образование токсичного отхода в производстве монохромата натрия, ликвидировать расход доломита и повысить степень извлечения хрома из хромовой руды на 15—17%. [c.193]


    В ряде случаев токсичность вещества возрастает с повышением его валентности. Например, среди соединений хрома [c.42]

    Образуюш,аяся при загрузке и выгрузке катализаторов пыль вызывает раздражение слизистых оболочек дыхательных путей. Особенно токсична пыль, содержащая хром. В этих случаях для защиты дыхательных путей пользуются респираторами. [c.194]

    Соединения хрома (III) являются нетоксичными, так как они не проникают через кишечный барьер. Однако соединения хрома (VI) легко проходят это препятствие благодаря своей анионной природе. Такой переход может быть обеспечен обычной водопроводной водой, которую для дезинфекции хлорируют. В организме Сг (VI) быстро восстанавливается в Сг (III), который реагирует с аминокислотами и белками. Соединения Сг (III) в организме высоко токсичны и канцерогенны. Хром даже в пылевидном состоянии вызывает рак легких. [c.602]

    Все соединения ванадия токсичны. Ванадий, ниобий, тантал широко используются в металловедении ванадий как легирующая добавка к стали, повышающая ее пластичность и устойчивость к истиранию использование ниобия связано с его сверхпроводимостью. Ниобий и тантал применяются также в качеств материалов для сверхзвуковых самолетов и ракет, танталовая проволока внедряется в современной хирургии. Карбид ниобия наряду с карбидами вольфрама, хрома и других переходных металлов служит для получения жаростойких сверхтвердых сплавов. Соединения ванадия применяются в качестве катализаторов. [c.520]

    Все перечисленные вещества токсичны. Предельно допустимые концентрации вредных веществ приведены в ГОСТ 12.1.005—76. При приготовлении промывочных жидкостей на буровой следует исключать использование наиболее вредных веществ (многовалентные соли хрома, сернистые нефти и др.), заменяя их менее токсичными использовать технологические методы приготовления, исключающие их разлив и выделение из них вредных паров и газов. [c.116]

    Ванны химического хромирования изготавливаются из керамики и стекла В начале процесса химического хромирования в ванну необходимо ввести катализаторы, например, алюминий, который должен находиться в контакте с покрываемыми изделиями После того как хромирование уже началось, присутствие катализаторов необязательно Для химического хромирования в указанных выше ваннах растворы приготавливают следующим образом- последовательно растворяют фтористый хром, хлористый хром, лимоннокислый натрий (или уксуснокислый натрий) н в заключение гипофосфит натрия, затем добавляется вода до требуемого объема В случае приготовления раствора для хромирования стальных деталей уксусная кислота и гидроксид натрия вводятся последними При работе с фтористым хромом следует соблюдать осторожность вследствие его токсичности [c.91]


    Резкое снижение активности алюмосиликатного катализатора подтверждено в работе [18] установлено, что наиболее токсичными из исследованных металлов являются никель, затем кобальт, медь, молибден, ванадий и хром (рис. 10). Для предотвращения отравления катализатора металлами необходимо проводить специальную подготовку сырья, т. е. улучшенная ректификация вакуумного газойля, термическая обработка и деасфальтизация остатка атмосферной перегонки, очистка вакуумного газойля селективными растворителями, серной кислотой и гидроочистка. [c.18]

    Электрохимические осадки хрома можно получать из растворов как трех-, так и шестивалентных соединений хрома. В последние годы большое внимание уделяется разработке условий получения высококачественных осадков хрома из его трехвалентных соединений, так как они отличаются меньшей токсичностью, а электрохимический эквивалент этих соединений вдвое выше, чем шестивалентных. [c.313]

    К наиболее токсичным веществам, используемым в гальванических производствах, относятся свинец, хром, ртуть, мышьяк и их соли, цианиды. С целью обеспечения безопасных условий труда все работающие в цехе должны четко выполнять инструкции и правила эксплуатации оборудования, а также правила обращения с ядовитыми вешествами и растворами. При работе с цианидными электролитами ванны должны быть оснащены мощной бортовой вентиляцией. Кроме того, должны соблюдаться требования к параметрам воздушной среды па ГОСТ 12.1.003—76. [c.351]

    В табл. 10 приводится перечень наиболее распространенных токсичных химических реагентов, используемых для промывочных жидкостей. Некоторой степенью токсичности обладают еще и целые группы материалов для приготовления буровых растворов содержащие щелочь, фенолсодержащие, содержащие хром, магнийсодержащие (так называемый сиде-ритовый утяжелитель). [c.135]

    Применение в оборотной воде для борьбы с коррозией токсичных ингибиторов, например, содержащих шестивалентный хром, требует контроля воздушной среды и почвы в районе градирен. Предельно допустимая концентрация (ПДК) Ст в почве составляет 0,5 мг на 1 кг почвы. ПДК Ст в атмосферном воздухе на промышленной площадке составляет 0,003 мг/м (30% ПДК для воздуха рабочей зоны, составляющего 0,01 мг/м согласно СН 245-71), а в населенных местах -ПДК Сг 0,0015 мг/м . Приведенные данные о ПДК обычно обеспечиваются при содержании Ст в оборотной воде не более 1,7 мг/л. [c.313]

    В сыром осадке первичных отстойников содержатся в большом количестве соединения хрома, сульфиды, ПАВ, жиры. Содержание соединений хрома достигает 48—55 кг/м , поэтому такие осадки являются нестабильными и токсичными. Содержание жира достигает 7—29 % массы сухого вещества осадка. Осадки сточных вод кожевенных заводов. [c.248]

    Токсичные вещества. К группе токсичных элементов относятся тяжелые металлы железо, никель, медь, свинец и цинк, а также мышьяк, сурьма, бор, алюминий, хром. [c.62]

    НЫХ отделений соединений тяжелых металлов, хрома и других токсичных веществ. [c.193]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв хромом (VI) подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до хрома (III), после чего проводится известкование для осаждения соединений Сг (III). [c.100]

    Удобрительная ценность осадков сточных вод определяется не только содержанием азота, фосфора и калия, но и присутствием ряда микроэлементов, необходимых растениям (бора, молибдена, марганца, цинка). Содержание солей некоторьгх других металлов (кадмия, свинца, хрома, ртути) ограничивает применение ОСВ как удобрения, поскольку они токсичны для растений, животных и человека. [c.289]

    При ЭТОМ токсичный Сг (VI) восстанавливается в экологически допустимый Сг (III). Этот процесс усиливается благодаря проявляемой производными лигнина восстановительной способности по отношению к хрому. Повышение температуры в допустимых для гелеобразования пределах увеличивает скорость ЭТОЙ реакции. [c.309]

    Токсичность хрома и его соединений. Чистый металлический хром, хромит и соединения Сг(1И) не оказывают особенно вредного действия на живые организмы. Для организма человека ядовитыми являются только соединения Сг(У1), которые, попадая па кожу, вызывают воспаление и образование трудпозаживающих язв. Аэрозоли, поступая вместе с воздухолг в полость носа, вызывают раздражение и восналепие слизистой оболочки носа. Соединения Сг(У1) вызывают при длительном воздействии общее заболевание организма оии канцерогенны. Установлено, что максимально допустимая концентрация пыли и аэрозолей в расчете на СгОз составляет 0,1 мгЫ воздуха [2]. [c.9]


    Хром. В качестве теркостабилизирующей и ингибирующей добавки для сохранения подвижности буровых растворов при высоких забойных температурах используют хроматы и бихроматы щелочных металлов. Хотя добавки их не превышают десятых долей процента, оцейивать содержание токсичного хрома в отходах бурения в некоторых случаях будет необходимо. Хром (VI) в щелочных растворах чаще всего находится в виде хромат-ионов. В присутствии восстановителей шестивалентный хром может перейти в трехвалентный. Поэтому обычно определяют общее содержание хрома в растворе или твердой фазе в зависимости от цели анализа. В справочной литературе для анализа хрома в воде рекомендуются титриметрический метрд определения хрома (VI) с сульфатом железа (II) и колориметрический метод определения с дифенилкарбазидом. Этими же методами определяют и общее содержание хрома в пробе. Содержание хрома (III) устанавливают по разности результатов определения общего и шестивалентнбго хрома. [c.160]

    При сжигании газов пиролиза дымовые газы меньше загрязнены летучей золой и сажей, чем при прямом сжигании отходов, что позволяет использовать их без дополнительной очистки для выработки водяного пара и в других целях. Имеются сведения, что тял елые металлы, содержащиеся в отходах, фиксируются в коксовом остатке кроме того, при пиролизе шестивалентный токсичный хром превращается в нетоксичный трехвалентный [60, 61]. [c.19]

    Эта технолопм очистки продувочных вод позволяет уменьшить концентрацию токсичных хрома и цинка, а также фосфатов до требуемого водоохранными органами уровня. [c.147]

    Вредное действие наиболее сильно проявляется у токсичных пылей. К их числу относится диоксид кремния 5102, который входит в состав носителей катализаторов, применяемых в нефтеперерабатывающей промышленности. Пыли этих катализаторов вызывают профессиональные заболевания — силикозы. В нефте-кимической промышленности широко применяются катализаторы на основе шести- и трехвалентного хрома, действующие на слизистые оболочки носоглотки и вызывающие прободение носовой перегородки. Ядовитыми являются также пыли нафтеновых кислот, амино- и нитросоединений. [c.46]

    В заключение отметим, что для нестационарного способа обезвреживания газовых выбросов промышленных предприятий целесообразно использовать окисные катализаторы. Классификация катализаторов глубокого окисления органических соединений и оксида углерода, их важнейшие характеристики приведены в ряде обзорных работ [12—14], Катализаторы на основе металлов платиновой группы являются наиболее активными и универсальными. Однако благородные металлы имеют высокую стоимость. В этом плане перспективны катализаторы на основе оксидов или солей переходных металлов (меди, кобальта, хрома, никеля, марганца), которые, несколько уступая по своей активности катализаторам, содержащим благородные металлы, значительно дешевле и доступнее. В научной и патентной литературе описаны разнообразные каталитические системы, применяемые для обезвреживания токсичных выбросов. Перечислим здесь лишь несколько марок окисных катализаторов, вы-1гускаемых в СССР. [c.174]

    Известный интерес предстявляет фенантренхинон прежде всего как ядохимикат, заменяющий токсичные и дорогие ртутно-органические протравители зерна [161] на его основе можно приготовить некоторые красители. В небольших масштабах фенантренхинон получают при окислении фенантрена перманганатом калия, бихроматом калия, оксидом хрома (У1) в серной или уксусной кислоте. Для крупного производства перечисленные методы не пригодны из-за большого расхода реактивов (3—7 т на 1 т фенан-тренхинона) и образования значительных объемов токсичных отходов. [c.107]

    Характерными зафязняющими веществами поверхностных вод продолжают оставаться нефтепродукты, ионы токсичных металлов, а также специфические вещества различных промьппленных и сельскохозяйственных предприятий. Так, под влиянием сброса сточных вод в реку Чу-совая в районе Первоуральска в 1993 г. среднегодовые концентрации хрома превысили ПДК в 25 раз, цинка - в 13 раз и нитритного азота - в 4 раза. Для притоков Кубани характерно повышенное содерж шие (до 6-12 ПДК) хлор- и фосфорорганических пестицидов (метафос, фозалои и др.). [c.41]

    Проблема токсичных отходов исключительно актуальна и для России. На территории страны на начало 1993 г. в отвалах, полигонах, хранилищах и свалках накоплено порядка 80 млрд. т твердых бьповых и промышленных отходов [63]. Из них токсичных и экологически опасных - более 1,1 млрд. т. Особую тревогу вызывают отходы I класса опасности (г альванические и нефтяные шламы, соединения ртути, хлорорганические вещества, хром и др.) Отсутствие на большинстве предгфиятий современных технологий по обезвреживанию таких отходов, необходимых мощностей и оборудования привело к тому, что из общего количества отходов 1 класса опасности полностью обезврежено только 7,4%. [c.66]

    Введением ингибирующих присадок может быть обеспечено также повышение защитной способности лакокрасочных покрытий. Так, модифицированные сульфонатами и серофосфорсодержащими веществами изолирующие глифталевые грунтовки по своим защитным свойствам не уступают пассивирующим, модифицированным фосфатом хрома, хроматом кальция, хроматом свинца, тетраоксихроматом цинка, но по сравнению с последними не содержат токсичных хроматов, которые, кроме того, легко восстанавливаются с образованием трехвалентного хрома, не принимающего участия в процессе ингибирования. [c.176]

    Уже предварительное рассмотрение такой схемы регенерации ценных компонентов из гальванических шламов позволяет выявить ее существенные недостатки сложность аппаратного оформления процесса, многостадийность, наличие токсичных органических реагентов. Кроме того, организация такого процесса требует серьезных капитальных вложений. При внедрении процесса открытым остается вопрос об использовании твердых компонентов после фильтрации раствора выщелачивания щламов, а также окончательного обезвреживания жидкой фазы после от-фильтровывания осадка гидроокиси хрома. [c.104]

    Изучена возможность использования ферритов кальция и цинка в грунтовках наряду с противокоррозионными пигментами для замены токсичных и дорогостоящих пигментов на основе свинца и хрома [6]. Грунтовки, содержащие ферриты кальция и цинка, представляют более серьезный барьер для диффузии ВОДЫ И кислорода, чем покрытия, пигментированные оксидом железа. В ал-кидных красках более эффективным является феррит кальция. Соотношение между инертным пигментом и ферритом кальция в фунтовках составляет 60 40. В хлоркаучуковых красках более эффективен феррит цинка, а соотношение между инертным пигментом и ферритом цинка составляет 80 20—70 30. Отмечается, что защитное действие ферритов кальция и цинка слабее, чем у классических противокоррозионных пигментов. [c.120]

    Рассмотрим назначение компокентов электролитов. Хлорид аммония участвует в токообразующей реакции, обеспечивает электропроводность электролита, а также вследствие буферных свойств растворов NH4 I стабилизирует pH электролита при невысоких плотностях тока. Хлорид кальция снижает температуру замерзания электролита. Он обязательно используется в рецептурах для ХИТ, работающих при низких температурах до —40°С хлорид цинка ускоряет загустевание электролита и предохраняет пасту от гниения. Сулема Hg b является ингибитором коррозии цинка. Контактно восстанавливаясь на нем до металлической ртути, она амальгамирует поверхность цинка, в результате увеличивается перенапряжение водорода и снижается скорость саморазряда. Следует отметить, что ввиду токсичности соединений ртути ведутся поиски других способов защиты цинка от коррозии. Рекомендованы органические ингибиторы коррозии, а также использование более стойких сплавов цинка со свинцом и кадмием. Сульфат хрома является дубителем и способствует упрочнению пасты. Бк хромат калия служит ингибитором коррозии цннка. Крахмал (250 г/л) является загустителем. [c.70]

    Проведенные исследования дают основание полагать, что при смешении фосфата хрома с тетраоксихроматом цинка происходит взаимодействие этих пигментов, приводящее к образованию фосфата цинка и новых хроматных соединений, лучше растворяющихся в воде, чем исходные соединения. При проведении испытаний в дистиллированной воде, камере Г-4 и 3%-ном растворе хлорида натрия было установлено, что покрытия, пигментированные смесью фосфата хрома и тетраоксихромата цинка, имеют лучшие защитные свойства, чем покрытия, пигментированные каждым из этих пигментов в отдельности. Оптимальным соотношением тетраоксихромата и фосфата хрома-является 30 70, что ранее было устанорлено при исследовании водных вытяжек. Это позволило втрое уменьшить в грунтовках содержание токсичного хроматного пигмента, заменив его нетоксичным фосфатом хрома. При этом защитные свойства таких грунтовок даже возросли. [c.145]

    Бихромат натрия ЫагСг407-2Н2О — красновато-оранжевые кристаллы. Токсичен при попадании в пищеварительные и дыхательные пути оказывает сильное раздражающее действие на слизистые оболочки. Получается из хромитовых руд, а также действием серной кислоты на хромат натрия. В щелочных растворах бихромат натрия превращается в хромат. Применяется как компонент хромлигносульфонатных и хром-лигнитных композиций для повышения термостабильности и для предотвращения коррозии в сильно минерализованных буровых растворах. Концентрации от 0,3 до 76 кг/м . В последние годы потребление бихромата натрия снизилось из-за внедрения более эффективных ингибиторов коррозии и повышенного внимания к токсичности химических реагентов. Потребление в 1978 г. составило 2000 т. [c.496]

    Известно около 200 минералов, в состав которых входит фосфор, однако наибольшие его количества встречаются в виде всего лишь нескольких ископаемых - апатита [Са,и(Р04)б(Г, С1, ОН)], фосфорита [Саз(Р04)з], фосфатов железа (ГеР04) и алюминия (А1Р0,). Важно, что в минералах фосфора содержатся довольно большие количества тяжелых металлов хрома, кадмия, ртути, свинца и урана. Это связано с изоморфным замещением главных ионов природных минералов фосфора (Са , А1 ", Ге Ре ) катионами следовых элементов. Поэтому выветривание фосфатных минералов сопровождается высвобождением этих токсичных элементов. [c.68]

    Принципиальное различие геохимии поверхностных вод континентов и океаносферы заключается в том, что в континентальных водах (особенно в реках) преобладают взвешенные формы рассеянных элементов, а в морской воде количество этих форм всегда в сотни и тысячи раз меньше, чем растворимых. Это относится и к таким токсичным металлам, как ртуть, свинец и хром. Поэтому отношение пресноводных и морских организмов к формам тяжелых металлов различаются. [c.252]

    Для извлечения из сточньгх вод металлов (цинка, меди, хрома, никеля, свинца, ртути, кадмия, ванадия, марганца), а также соединений мышьяка, фосфора, цианидов используется ионообменная очистка, позволяющая не только освобождать воду от загрязнения токсичными элементами, но и улавливать для повторного использования ряд ценных химических соединений. [c.258]

    Окислительные состояния важны для предсказания поведения элементов или соединений. Например, хром нерастворим и не токсичен в виде хрома (III), тогда как хром (VI) образует растворимый токсичный анион rOt- Как все простые правила, определение окислительных состояний применимо для большинства, но не для всех соединений. [c.83]

    К особо токсичным относятся отходы, содержащие ртуть, свинец, кадмий, олово, мышьяк, таллий, бериллий, хром, сурьму, цианиды, фосфорорганические вещества, асбест, хлорированные растворители, фторхлоруглероды, полихлориды дифенилов, полициклические и ароматические углеводороды, пестициды, а также радиоактивные отходы. [c.336]

    Вместе с тем полигоны, особенно недостаточно оборудрванные, являются источником загрязнения окружающей среды, прежде всего почвы и подземных вод. Так, при обследовании 27 полигонов и свалок Московской области было выявлено, например, загрязнение первого водоносного горизонта под Хметьевским полигоном и на расстоянии 400-450 м от него повышенными концентрациями алюминия, хрома, бария, титана, олова. Практически все подземные воды оказались токсичными (загрязненными), а поверхностные — высокотоксичными (Грибанова...). [c.365]


Смотреть страницы где упоминается термин Токсичность хрома: [c.542]    [c.43]    [c.281]    [c.315]    [c.445]    [c.169]    [c.164]    [c.244]    [c.108]   
Возможности химии сегодня и завтра (1992) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте