Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм отравления катализатора металлами

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]


    Хотя эти процессы являются самыми простыми из возможных реакций, протекающих в присутствии концентрированных водных растворов гидроксидов щелочных металлов, механизм этих превращений долгое время был непонятен. Депротонирование может протекать на поверхности раздела фаз, в органической фазе под действием экстрагированного гидроксида аммония или же внутри инвертной мицеллы. В настоящее время известно, что этот процесс протекает в результате экстракции QOH. Поскольку при этом не образуется липофильного галоге-нид-аниона, то отравления катализатора не происходит. Протонирование или дейтерирование промежуточно образовавшегося карбаниона протекает под действием небольших количеств НгО или ВгО, которые экстрагируются вместе с анионом. [c.214]

    Механизм отравления катализатора металлами [c.41]

    Экспериментальные данные позволили высказать следующую гипотезу о механизме отравления катализаторов металлами. [c.166]

    Механизм отравления и промотирования катализатора металлами. В литературе существует мнение, что металлы могут влиять на качество катализатора двояко. Такие металлы, как никель, ванадий, железо и другие, снижают активность и избирательность катализатора [45, 64, 202, 213] щелочные металлы, например натрий, уменьшают только активность катализатора не изменяя избирательности [45]. [c.171]

    Отравление катализатора металлами изучалось многими исследователями, но механизм воздействия их на активность катализатора в достаточной мере не выяснен. Однако полагают, что наибольшее снижение активности катализатора происходит в момент контакта отравляющих компонентов с катализатором. Металл, уже отложившийся на катализаторе, меньше влияет на его активность. Очевидно, это объясняется многократной регенерацией катализатора в системе крекинга, вызывающей его дезактивацию в присутствии окисей металлов и сопровождающейся уменьщением его удельной поверхности. Отложение окислов тяжелых металлов приводит к снижению глубины крекинга и выхода бензина вследствие большего коксообразования (рис. 20 и 21). Как видно из приведенных данных, повышение содержания в катализаторе окиси никеля приводит к увеличению коксообразования и снижению выхода бензина. Особенно показательны на указанных рисунках кривые, отвечающие содержанию окиси никеля соответственно 1500-10- и 850-10- % (масс.) [12]. [c.63]

    Таким образом, металлы, нанесенные на алюмосиликатный ка-тализатор, не изменяя его физико-химических свойств, вызывают резкие изменения его активности и селективности, которые очень сильно зависят от концентрации металла и его природы. При содержании на катализаторе исследованных металлов более 0,02 вес. % катализатор отравляется, что проявляется в значительном уменьшении выхода бензина, увеличении выхода кокса, газа и водорода. Наряду с общепризнанным отравляющим действием нами было обнаружено и промотирующее действие некоторых из этих металлов (свинца, ванадия, молибдена) в пределах концентраций 1 10- —Ы0 2 вес. % от массы катализатора. Если нанесенного металла более 0,02 вес. %, то активность катализатора становится меньше первоначальной. Видимо, поскольку большинство исследователей при изучении механизма отравления оперировали относительно большими концентрациями металлов, они не могли отметить возможность промотирования катализатора крекинга. [c.161]


    Механизм отравления связан с типом катализа и различен для электронного (гомолитического) катализа на полупроводниках и металлах и ионного (гетеролитического) катализа [20]. Наиболее сложен механизм отравления на металлических и полупроводниковых контактах [20, 22, 30, 32, 33, 43, 45]. Катализаторы полупроводникового типа более устойчивы к действию ядов, чем металлические [20]. Это, видимо, связано с большим содержанием в полупроводниках различных примесей, вследствие чего дополнительное введение тех или иных добавок не приводит к сильному модифицированию свойств. Процесс отравления полупроводниковых контактов изучен значительно меньше, чем металлических [20]. [c.68]

    Механизм отравления серой при концентрациях НаЗ от 1 до 100 млн , вероятно, сводится к конкуренции реагентов, адсорбирующихся на активных местах катализатора (см. разд. 6.2). На образование сульфида на поверхности может сильно влиять добавление к каталитическому металлу второго компонента. Образование прочного соединения может ингибировать сульфи-дацию поверхности. Наоборот, сильное удаление электронов из второго компонента может сделать активный металл более устойчивым к отравлению серой, например, как в случае катализаторов типа платины, нанесенной на цеолит [26]. Данные об активности и селективности для меди, сплавленной с другими активными металлами (например, никель) могут представлять большой интерес вследствие слабой тенденции меди к образованию сульфида в объеме. [c.267]

    Крупные частицы крошки и циркулирующий катализатор содержат примерно одинаковое количество металлов. С уменьшением размеров частиц содержание металлов в пыли резко возрастает (рис. 37). Это обусловлено концентрированием металлов в промышленных условиях у внешней поверхности щариков катализатора [101, 102]. В более крупных частицах крошки, образовавшейся за счет полного разрушения шариков, содержится металлов столько же, сколько в равновесном катализаторе. Эти данные согласуются с представлениями о двух механизмах разрушения катализатора. Они также показывают, что низкое содержание металлов в циркулирующем катализаторе установок типа 43-102, а, следовательно, слабое его отравление обусловлено интенсивны.м выносом металлов с поверхности катализатора в результате его истирания. [c.85]

    Ядовитость первой группы соединений Мэкстед связывает с наличием у них неподеленных электронных пар, вследствие чего образуются прочные хемосорбционные связи яда с металлом, обусловливающие большую продолжительность жизни яда в адсорбированном состоянии. Таким образом, яд, покрывая поверхность катализатора, дезактивирует его. Г. Д. Любарский [117] показал, что при покрытии монослоем тиофена никелевого катализатора гидрирования наступает полное отравление последнего. Если активная поверхность составляет лишь часть общей поверхности катализатора, то количество яда, вызывающее полное отравление, естественно, меньше, чем требующееся для образования монослоя. Роль неподеленных электронных пар в механизме отравления подтверждается тем, что соединения, в которых они отсутствуют, не токсичны (см. табл. 1.3). Нужно только иметь в виду, что нетоксичные соединения под влиянием реагентов могут переходить в токсичные например, арсенаты в условиях гидрирования переходят в арсины. [c.74]

    Процессы гидродеароматизации направлены на удаление ароматических углеводородов из прямогонных фракций и легкого газойля каталитического крекинга путем перевода их в нафтены с целью получения компонентов реактивных топлив и растворителей. Для гидрирования ароматических углеводородов использовали никельвольфрамсульфидные катализаторы, обладающие низкой активностью. Для повышения гидрирующей способности к обычным катализаторам добавляли или Р(1, гидрирующие способности которых на один-два порядка выше сульфидов Мо и №. В присутствии электроноакцепторной матрицы-цеолита металлический катализатор защищается от отравления сернистым ядом. Возникновение дефицита электронной плотности на атомах металла, взаимодействующих с сильнокислотными протонными центрами носителя по донорно-акцеп-торному механизму, сдвигает равновесие сульфидирования влево. Электроноакцепторная защита эффективна для металлов групп и Рс1 при содержании серы в сырье до 0,5%. Избыточная расщепляющая активность катализатора, возникающая в результате введения Р1, может быть подавлена селективной щелочной обработкой катализатора. Электроноакцепторная защита металла реализована в катализаторах гидродеароматизации ГТ-15 и ГТ-15М. Эти катализаторы обеспечивают высокую степень гидрирования при содержании серы в сырье до 0,5%. Для продуктов с более высоким содержанием серы применяют катализаторы типа 269 и 269М в оксидной форме и НВС-30 в сульфидной форме системы Mo(W), Перечисленные катализаторы позволяют снизить давление процесса до 5 МПа без изменения степени гидрирования при удвоенной объемной скорости. [c.179]


    Одним из первых обзоров, включающим теоретические обобщения по механизму отравления платиновых контактов, является работа [351. По мнению автора, отравление катализаторов — избирательный адсорбционный эффект, зависящий от образования сильных адсорбционных связей между контактом и ядом. К числу каталитических систем, чувствительных к отравлению, относятся металлы УП1 группы, щироко применяемые для гидрирования и дегидрирования. Ядами обычно бывают те сильно адсорбируемые вещества, которые имеют способность (вследствие сильного связывания с катализатором) накапливаться в адсорбированной фазе на поверхности контакта в процессе адсорбционно-десорбционного равновесия. Вследствие покрытия ядом поверхность уже не оказывается свободной для обычного участия в адсорбции и катализе менее сильно удерживаемых, но способных реагировать веществ. По данным [351], наличие или отсутствие токсических свойств зависит от электронной конфигурации потенциально токсичного элемента в молекуле. Если этот элемент содержит неподеленные внешние электронные пары, благодаря которым возможна хемосорбционная связь с металлическим катализатором, то молекула токсична. Так, токсичной будет молекула сероводорода Н 5 Н, но нетоксичен сульфат-ион  [c.130]

    При изучении влияния тиофена на активность АПК (0,25 мас.% Р1) с добавками Сд, Оа и РЬ (весовое отношение Ме Р1=1 1) в реакции конверсии н.гексана на микрокаталитической установке найдено, что степень снижения каталитической активности по различным направлениям превращения н.гексана в результате отравления тиофеном определяется величиной дозы яда и температурой процесса и не зависит от природы изученных контактов [360]. Авторы полагают, что ароматизация н.гексана в присутствии биметаллических катализаторов, как и на алюмоплатиновом, идет преимущественно через Сб-дегидроциклизацию. Время восстановления первоначальной активности зависит от их состава Р1—Оа = Р1—С(1>Р1>Р1—РЬ и, видимо, обусловлено способностью к восстановлению сульфидов соответствующих металлов. Одинаковая глубина отравления для всех изученных катализаторов свидетельствует об общности механизма отравления для всех контактов. [c.135]

    Адсорбционно-химические равновесия встречаются во многих процессах. Так, в реакции синтеза аммиака возникает не только равновесие между адсорбированным азотом и водородом и аммиаком в газовой фазе — стадия 2 схемы (1У.43) [162, 170], рассматривается также адсорбционно-химическое равновесие стадии 4 схемы (У.Вб) [290]. В присутствии кислородсодержащих веществ в этой же реакции одновременно устанавливается равновесие поверхностного кислорода с водородом и водяным паром (У. 87) [156, 343], которое возникает и в ряде других процессов — в реакциях переноса дейтерия между водяным паром и водородом [433 ], в определенных условиях реакции конверсии окиси углерода водяным паром, когда она протекает через лимитирующую стадию [434], в процессе конверсии метана [435], возможно ее установление и в некоторых окислительных процессах, например при окислительно-восстановительном механизме реакции окисления водорода на окисных катализаторах. Равновесие (У.87) имеет существенное значение в различных реакциях гидрирования и дегидрирования органических соединений на металлах при отравлении кислородсодержащими веществами, например при дегидрировании спиртов 436]. [c.235]

    В современных представлениях о характере связывания сераорганических соединений с никелем в процессе десульфуризации также пока нет определенности. Большинство исследователей сходится во мнении, что соединения, содержащие двухвалентную серу, первоначально адсорбируются на поверхности никеля за счет неподеленных З э-электронов атома серы [12,13]. Что касается дальнейшей судьбы адсорбированного сераорганического соединения, то по этому поводу существуют различные точки зрения. Любарский и сотр. [14], изучавшие отравление никелевых катализаторов тиофеном, предложили следующий механизм взаимодействия тиофена с поверхностью никеля. Молекула тиофена, попадая на поверхность металла, прочно на ней адсорбируется, располагаясь плоско и связывая пять поверхностных атомов никеля (см. схему, точками обозначены атомы никеля)  [c.258]

    При изучении механизма отравления катализатора металлами важное место занимают исследования раопределе-нмя металлов по сеченИю лранул катализатора. Среди таких работ следует опметить работы Миллса, Милликена [138]. [c.31]

    Другая точка зрения на механизм отравления катализатора высказывается в работе [239]. Ее авторы нашли, что зависимость степени превращения сырья от кислотности алюмосиликатного катализатора изображается прямой А (рис. 75), уравнение которой имеет вид степень превращения, вес. % =34 Xкислотность +11,2 (кислотность определяли по адсорбции нормального бутиламина, а изменяли ее водной либо кислотной обработкой катализатора). После нанесения на катализатор примесей металлов пропиткой его водными растворами солей опять определяли кислотность образцов и их активность (по методу Кат-А). Эта зависимость для образцов катализатора с содержанием окислов хрома, натрия, меди и цезия изображена на рис. 75 пунктирными линиями. Из рисунка видно, что при нанесении на катализатор металлов зависимость между кислотностью и степенью превращения, установленная для [c.172]

    Проблемой отравления катализатора металлами занимаются многие исследователи, изучая Механизм отравления и методы реактивации катализаторов. Еще в 1947 г. Ю. А. Би-тепаж [116] обратила внимание на то обстоятельство, что [c.21]

    В своей класснчеокой работе Боигеффер и Гартек [56] проводили различие между такими катализаторами, как древесный уголь и платиновая чернь, из которых оба активны в осуществлении реакции превращения параводородортоводород. Древесный уголь наиболее активен при низких температурах, и поэтому он используется для приготовления параводорода при 77° К или более низких температурах. Платиновая чернь неактивна при низких температурах, но ее активность возрастает с повышением температуры. Позже оказалось возможным [57] различить два механизма, которые мы можем назвать парамагнитным и химическим. Считается, что активированный уголь является парамагнитным катализатором, т. е. что водород превращается магнитным полем ненасыщенных поверхностных атомов катализатора. Этот механизм был установлен для двух классов гомогенных катализаторов, парамагнитных газов и парамагнитных ионов в растворе [58], и теоретически истолкован Вигнером [59]. Согласно Вигнеру, температура мало влияет на вероятность перехода, так что скорость превращения зависит главным образом от концентрации молекулы водорода в вандерваальсовом слое, которая увеличивается с понижением температуры и даег наблюдаемый результат. Было также найдено, что парамагнитные окислы металлов активны в этом отношении, а диамагнитные окислы тоже активны, однако в меньшей степени [60]. В частности, убедительным является результат, что кислород, адсорбированный на угле при низких температурах, а потому преимущественно в форме парамагнитных молекул вызывает превращение. Если кислород адсорбируется при более высоких температурах, то он производит отравление, связанное с адсорбцией в виде атомов [57]. [c.170]

    Механизм отравления тяжелыми металлами объясняется следующим образом. Согласно последним представлениям активность алюмоснли-катного катализатора обусловлена наличием на его поверхности кислотных активных центров (т,е. связана с кислотностью). В то же время она зависит от удельной поверхности катализатора. Неизменность этих показателей при отложении тяжелых металлов на поверхности катализаторов привела исследователей 24,53,54 к выводу, что эти отложения образуют новый поверхностный слой, обладающий совер-венно иными каталитическими свойствами, в результате чего увели- чивается выход кокса и водорода. Испытание силикагеля с нааесеяанм на него никелем подтвердило, что викель в условиях крекинга пол- [c.41]

    В рамках рассматриваемого механизма дегидрирования отмечавшееся ранее [1—4] снижение дегидрирующей активности АХ катализаторов при чрезмерной дегидратации их поверхности объясняется образованием тригонально координированных ионов Сг по реакции (2), а ]1ромотпрующее действие оксидов щелочных металлов па дегидрирующую активность АХ образцов авторы предложенного механизма (5) объяигяют более селективным образованием ионов в квадратно-пирамидальной координации в присутствии МегО. Образование па поверхности промотированных АХ катализаторов групп —О—Ме (вместо гидроксильных) снижает десорбцию воды (нз-за отсутствия водорода) с поверхности образцов при высоких температурах и тем самым препятствует образованию неактивного тригонально координированного хрома (П1) вместе с тем, не исключается также возмол<ность повышения селективности промотированных АХ катализаторов в реакции дегидрирования за счет отравления нонами щелочных металлов кислых центрОЕ на поверхности оксида алюминия [6]. [c.9]

    Возникает вопрос, насколько реальны получающиеся при такой оценке стехиометрические коэффициенты. Хотя в литературе имеется мало сведений о значениях п при нулевых заполнениях, все же некоторое сравнение можно сделать. Для адсорбции водорода на платине п = 1,2. В работе [241 из рассмотрения инфракрасных спектров видно, что при адсорбции водорода на два атома платины приходится 1,5 атома водорода, т. е. = = 1,3. Для адсорбции этилена на железе и никеле стехиометрический коэффициент близок к четырем, что согласуется с принятым в литературе механизмом гидрирования С2Н4, включающим четыре поверхностных атома металла в первичном акте адсорбции. В случае адсорбции окиси углерода на переходных металлах п 2 или I, что указывает, вероятно, либо на мостиковую, либо на карбонильную (линейную) связь. Как известно, такого типа связи в последние годы были установлены методом инфракрасной спектроскопии. Величины п = I и 2 для двух форм адсорбции окиси углерода на вольфраме согласуются с работой П. Редхеда [15], получившего аналогичные стехиометрические коэффициенты на основании адсорбционных измерений. В работах М. И. Темкина отмечалось, что в условиях синтеза аммиака при отравлении парами воды один атом кислорода вытесняет хемосорбированную молекулу азота, т. е. из этого следует соотношение стехиометрических коэффициентов для кислорода и азота на железном катализаторе, равное двум из результатов таблицы получается аналогичный вывод (По,)ре = 8 и (ДЫг)ре = 4. [c.103]


Смотреть страницы где упоминается термин Механизм отравления катализатора металлами: [c.44]    [c.136]    [c.301]    [c.162]    [c.55]    [c.23]    [c.248]    [c.248]    [c.136]    [c.135]    [c.34]    [c.223]   
Смотреть главы в:

Отравление металлами и старение катализаторов крекинга -> Механизм отравления катализатора металлами




ПОИСК





Смотрите так же термины и статьи:

Катализаторы механизм

Металлы отравление

Отравление катализаторов



© 2024 chem21.info Реклама на сайте