Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор и щелочи, производство метод с ртутным катодом

    Постоянная опасность отравления парами ртути существует на ртутных рудниках, при переработке руд с целью получения из них металлической ртути изготовлении люминесцентных и радиотехнических дамп производстве термометров и контрольноизмерительных приборов, использующих ртуть 6-10 производстве ртутных вентилей, изготовлении медикаментов, имеющих в своем составе ртуть или ртутные соединения, изготовлении материалов для индивидуальных пакетов Интоксикация ртутью наблюдается также при производстве щелочи и хлора путем электролиза на ртутном катоде, получении чистых металлов методами амальгамной металлургии, синтезе и применении ртутноорганических а также других химических соединений, технология которых связана с использованием ртути и ее соединений, например, в качестве катализатора эксплуатации энергетических ртутно-паровых установок, ртутных вентилей на тяговых подстанциях дрд использовании ртутных ламп в светокопировальных мастерских [c.246]


    В современной промышленности электролитическое производство хлора и каустической соды основано на использовании двух различных методов электролиза с твердым катодом (диафраг-менный) и с ртутным катодом. Эти методы различаются по реакциям, протекающим на катодах. На твердом катоде в процессе электролиза происходит разряд ионов водорода, а в электролите образуется щелочь. На ртутном катоде разряжаются ионы натрия, в результате образуется амальгама натрия, которую выводят из электролизера и разлагают водой при этом выделяется водород и образуется щелочь. Освобождающуюся при разложении амальгамы ртуть возвращают в электролизер. [c.131]

    Сырьем для производства хлора и щелочи электролитическим методом как с твердым, так и с ртутным жидким катодом является поваренная соль. Чистая поваренная соль содержит 39,4% натрия и 60,6% хлора. В природной поваренной соли содержатся примеси — хлориды кальция и магния, сульфаты этих же элементов и другие. [c.375]

    На рис. 190 приведена принципиальная схема производства хлора и щелочи по диафрагменному методу, а на рис. 191—в электролизерах с ртутным катодом. [c.416]

    Несколько отличной областью применения электрохимических методов в органическом синтезе является восстановление органических соединений амальгамой натрия в аппаратах-разлагателях при производстве хлора с применением ртутных катодов. Однако в настоящей главе рассматриваются только процессы прямого электрохимического синтеза органических соединений. Поскольку эффективность амальгамных методов определяется главным образом конъюнктурой производства хлора и щелочи, она должна разбираться в непосредственной связи с так называемой, проблемой щелочного балласта . [c.444]

    Состав раствора. Выход щелочи по току зависит от концентрации хлорида натрия в анолите (рис. 2.42). Для питания электролизера с ионообменной мембраной используют рассолы, состав которых такой же, что и состав рассола для производства хлора, щелочи и водорода другими описанными выше методами. Однако степень разложения хлорида натрия составляет 0,7 по сравнению с 0,5 при электролизе с фильтрующей диафрагмой и 0,17 — при электролизе с ртутным катодом. [c.173]

    В настоящее время хлор и едкие щелочи вырабатываются двумя электрохимическими методами. Один из них — электролиз с с твердым катодом (диафрагменный метод производства), другой— электролиз с жидким ртутным катодом (ртутный метод производства), Оба метода дают хлор приблизительно одной и той же чистоты. [c.36]


    Ионообменные мембраны нашли наиболее широкое ирименение в производстве хлора и щелочи. По мнению многих исследователей, мембранному электролизу принадлежит будущее в развитии хлорного производства. Он лишен основного недостатка электролиза с ртутным катодом — загрязнения окружающей среды ртутью. Сейчас мембранный метод становится самым экономичным, так как позволяет получать раствор щелочи высокой концентрации и чистоты. [c.85]

    Электролитическое производство хлора и щелочей может быть осуществлено двумя методами 1)с твердым катодом й 2) с ртутным катодом. Принципиальное отличие этих ме- [c.273]

    Быстрое развитие метода электролиза с ртутным катодом в основных промышленных странах мира, связанное с ростом потребления чистой каустической соды в производстве вискозного волокна и в ряде других отраслей промышленности, сопровождалось его усовершенствованием и улучшением технико-экономических показателей. Наблюдавшиеся ранее преимущества производства хлора методом электролиза с твердым катодом по удельным капиталовложениям, эксплуатационным затратам и себестоимости продукции по сравнению с методом электролиза с ртутным катодом к настоящему времени в значительной степени нивелированы. В зависимости от конкретных условий производства, стоимости электроэнергии и пара, наличия твердой поваренной соли оба эти метода производства могут иметь одинаковую или близкую технико-экономическую эффективность. Следует, однако, отметить, что потребности промышленности в каустической соде высокой чистоты во многом определяют перспективы развития и соотношение различных методов производства хлора и щелочей, [c.13]

    Помимо проблемы создания безопасных условий труда на самих хлорных заводах, которая решена удовлетворительно, не менее важна проблема, связанная с заражением ртутью окружающей природы. В последнее время этому вопросу уделяется большое внимание. В Швеции, Японии и США, например, обнаружены случаи ртутных отравлений в результате употребления в пищу рыбы, которая питалась рачками, поглощавшими ртуть из сточных вод хлорных заводов. В связи с этим принимаются срочные меры по тщательной очистке сточных вод и водорода от ртути. Кроме того, изыскиваются возможности замены ртутного метода диафрагменным в отдельных случаях ставится вопрос о закрытии производства хлора по ртутному методу Однако это осуществимо только тогда, когда можно обойтись без щелочи высокой чистоты, вырабатываемой в ваннах со ртутным катодом. [c.202]

    При создании безопасных условий труда на хлорном заводе прежде всего учитывают физико-химические свойства продуктов электролиза высокую токсичность хлора, взрывоопасность смесей водорода с хлором и воздухом, раздражающее и обжигающее действие щелочи на слизистые оболочки и кожные покровы. Вредность и опасность производства хлора и каустической соды по методу электролиза с ртутным катодом определяется также наличием в этом производстве металлической ртути. В отделении электролиза с поверхности электролизеров выделяется большое количество тепла, поэтому принимаются специальные меры для его отвода. Следует также иметь в виду, что при эксплуатации электролизеров возможно поражение обслуживающего персонала электрическим током. [c.9]

    Рассмотрен процесс электролиза воды с целью получения водорода и кислорода при атмосферном и повышенном давлении, производство тяжелой воды электрохимическим методом. Показаны новые технические достижения в производстве хлора и щелочей на примере получения каустической соды методами электролиза водных растворов хлоридов щелочных металлов с фильтрующей диафрагмой, ионообменными мембранами и ртутным катодом. [c.4]

    Потребность народного хозяйства в чистых щелочах зависит от структуры потребления этих продуктов в каждой стране. По данным [8, 18, 35] потребность в чистой каустической соде в различных странах составляет 15—25% от общего его потребления. По-видимому, эти цифры должны определять нижний уровень производства методом с ртутным катодом в общем производстве хлора и каустической соды в каждой из стран. [c.155]

    Технология электролиза с ртутным катодом в настоящее время является наиболее совершенной. Электролизеры с ртутным катодом и анодами ОРТА работают при нагрузках 400—450 кА с плотностью тока до 15 кА/м . Электролиз с ртутным катодом обеспечивает получение непосредственно в электролизерах концентрированной щелочи (до 50% гидроксида натрия) высокой степени чистоты и раствора гидроксида натрия особой чистоты, применяемого в полупроводниковой технике и других отраслях промышленности. Ограниченность ресурсов ртути, введение жестких норм на содержание ртути в отходах производства, сбрасываемых в водоемы и атмосферу, разработка и освоение рациональных методов очистки от примесей диафрагменной каустической соды, а также разработка мембранного электролиза обусловливают замедление развития электролиза с ртутным катодом. В Советском Союзе объем производства каустической соды и хлора электролизом с ртутным катодом по мере промышленного внедрения мембранного электролиза будет сокращаться, что позволит исключить загрязнение ртутью окружающей среды [1]. [c.7]


    ОРТА нашли широкое применение в производстве хлора и щелочей электролизом с ртутным катодом. В этом методе используют конструкции электролизеров с горизонтальным расположением электродов и применяют высокие плотности тока до 10 кА/м и выше. В этих условиях газонаполнение электролита в межэлектродном. пространстве при использовании графитовых анодов может достигать большой величины й потери ыапряжения на преодоление сопротивления газонаполненного электролита составляют 0,2—0,3 В/мм. Электролизеры с графитовыми анодами требовали систематической регу.тировки межэлектродного расстояния для компенсации износа анодов их приходилось опускать во время работы электролизеров. Это усложняло конструкцию электролизеров и их обслуживание в процессе эксплуатации. Поэтому возможность замены графитовых анодов проницаемыми для газа анодами стабильных размеров в процессе электролиза с ртутным катодом была очень заманчира, и ОРТА получили широкое распространение. [c.209]

    Постоянная опасность отравления нарами ртути существует на ртутных рудниках, при переработке руд с целью получения из них металлической ртути изготовлении люминесцентных и радиотехнических ламп производстве термометров и контрольноизмерительных приборов, использующих ртуть производстве ртутных вентилей, изготовлении медикаментов, имеющих в своем составе ртуть или ртутные соединения, изготовлении материалов для индивидуальных пакетов Интоксикация ртутью наблюдается также нри производстве щелочи и хлора путем электролиза на ртутном катоде, получении чистых металлов методами амальгамной металлургии, синтезе и применении ртутпоорганических а также других химических соединений, технология которых связана с использованием ртути и ее соединений, например, в качестве катализатора эксплуатации энергетических ртутно-паровых установок, ртутных вентилей на тяговых подстанциях дрд использовании ртутных ламп в светокопировальных мастерских Опасность ртутной интоксикации существует при добыче каменного угля и других полезных ископаемых, если выработка ведется с помощью взрывов и применяют детонаторы с гремучей ртутью. В результате взрыва гремучая ртуть разлагается и воздух в горных выработках загрязняется ее парами, содержание которых может превышать санитарную норму в 28—100 раз [c.246]

    Электрохимическое производство химических продуктов составляет большую отрасль современной химической промышленности, Среди крупнотоннажных электрохимических производств на n piiOM месте стоит электролитическое получение хлора и щелочей, которое основано на электролизе водного раствора поваренной соли. Мировое электролитическое производство хлора составляет —30 млн, т в год. Хлорный электролиз принадлежит к числу наиболее старых электрохимических производств, начало ему было положено еще в 80-х годах прошлого века. В настоящее время используют два метода электролиза с ртутным катодом и с твердым катодом (диафрагменный метод). На ртутном катоде разряжаются ионы Na+ и образуется амальгама, которую выводят из электролизера, разлагают водой, получая водород и щелочь, и снова возвращают в электролизер. На твердом катоде, в качестве которого используют определенные марки стали с относительно низким водородным перенапряжением, выделяется водород, а электролит подщелачивается. Диафрагма служит для предотвращения соприкосновения выделяющегося на аноде хлора со щелочным раствором. На аноде обоих типов электролизеров выделяется хлор, а также возможен разряд ионов гидроксила и молекул воды с образованием кислорода. Материал анода должен обладать высокой химической стойкостью, В качестве анодов используют магнетит, диоксид марганца, уголь, графит, В последнее время разработаны новые малоизнашиваемые аноды из титана, покрытого активной массой на основе смеси оксидов рутения и титана. Эти электроды называются оксидными рутениевотитановыми анодами — ОРТА, [c.271]

    Свинцово-щелочные сплавы и ртутные амальгамы могут быть использованы как биполярные электроды, у которых иа катодной стороне идет разряд щелочного металла из расплавов или водных растворов солей, а на анодной стороне — ионизация этого металла с последующим получением чистой щелочи в водных растворах или чистого металла в неводном электролите. На таком включении амальгамного электрода основывается большинство предложений по полезному использованию энергии разложения амальгамы в производстве хлора и каустической соды по методу с ртутным катодом. Возможно сочетание амальгамного электрода с катионообменной мембраной для осуществления непрерывного процесса электролиза с неподвижным ртутным катодом [14]. При использовании неподвижных жидких катодов такого типа обычно наблюдается высокий градиент концентрации щелочного металла в слое жидкого катода, и чтобы повысить выход по току, необходимо перемешивать яшдкий электрод или работать с движущимся жидким электродом. [c.38]

    Глава II. Электролиз хлористых солей щелочных металлов. (Производство хлора и щелочей)— 48—113. 14. Продукты электролиза. Применение хлора и щелочей. Сырье — 49. 15. Процессы на электродах. Взаимодействие хлора со щелочью — 54. 16. Классификация и обзор способов электролиза — 58. 17 — Электроды и контакты — 63. 18. Диафрагмы — 72. 19. Состав растворов при электролизе с проточным электролитом 76. 20. Выход по току при электролизе растворов хлористого натрия с твердым кьто-дом — 79. 21. Основные элементы промышленных методов электролиза с твердым катодом — 83. 22, Электролиз с ртутным катодом — 90. 23. Энергетический и материальный баланс ванн для электролиза растворов хлористого натрия — 100. 24. Техноло-гаческие схемы хлорных заводов и производства, непосредственно связанные с электролитическим производством хлора —- 107. [c.539]

    Потери соли с товарной каустической содой неизбежны, однако они могут быть снижены путем тщательного отстаивания и фильтрования уваренного щелока, а также выпаривания его до получения более концентрированной щелочи. Так, растворимость Na l в 42%)-ной щелочи составляет 2,6%, а в 50%-ной — около 1,8%). При производстве хлора по методу электролиза с ртутным катодом соль со щелочью не теряется. [c.143]

    Принципиальная схема производства хлора и щелочи по диаф-рагменному методу приведена на стр. 369 (схема 8), а на стр. 370 (схема 9) — в электролизерах с ртутным катодом. [c.368]

    Первый патент на электролизер с ртутным катодом для получения хлора и щелочи был взят Нольфом в 1882 г. [4], а первое промышленное предприятие, вырабатывающее эту продукцию в ртутных ваннах Кастнера, было введено в эксплуатацию в 1894 г. в Англии [5]. Четырьмя годами ранее в Грисгейме (Германия) начала работать первая промышленная установка для производства хлора методом электролиза в ваннах с диафрагмой. [c.5]

    Еще в начале XIX века Берцелиус и Дэви. обнаружили, что при электролизе растворов солей щелочных металлов с ртутным катодом получаются амальгамы. При взаимодействии амальгам с водой они разлагаются с образованием гидроксидов щелочных металлов, а также водорода и ртути. Это открытие впоследствии было положено в основу промышленного производства хлора и щелочей электролизом щелочных хлоридов в ваннах с ртутным катодом. Первый патент на электролизер с ртутным катодом для получения хлора и щелочи был взят Нольфом в 1882 г., а первое промышленное предприятие, вырабатывающее эту продукцию в ртутных ваннах Кастнера, было введено в эксплуатацию в 1894 г. в Олдберри (Англия). Четырьмя годами ранее в Грисгейме (Германия) Начала работать первая промышленная установка по производству хлора методом электролиза в ваннах с диафрагмой. [c.5]

    Методы электролиза растворов хлористых солей. Электролитическое производство хлора и ш,елочей осуш,ествляется двумя методами 1) с твердым железным катодом и 2) с жидким ртутным катодом. В качестве анодов в обоих случаях применяется графит. Эти методы принципиально отличаются друг от друга процессами, идушими на катодах. В то время как на твердом катоде — железе происходит разряд ионов водорода и в растворе образуется щелочь, на ртутном катоде разряжается ион натрия, образующий с ртутью амальгаму. Вследствие этого в ваннах с ртутным катодом нет необходимости отделять катодные продукты электролиза от анодных. Удаляемую из ванны амальгаму натрия разлагают водой на щелочь и водород в другом аппарате -— р а а л а-г а теле. Выделенная из амальгамы ртуть вновь возвращается в ванну. Таким образом, этот процесс осуществляется с движущимся ртутным катодом — ртуть непрерывно циркулирует (подробнее см. стр. 580). [c.570]

    Если описанный процесс будет протекать в одном и том же сосуде, то между гидроксидом натрия и выделяющимся хлором произойдет реакция. Щелочь будет загрязнена, а многим отраслям производства необходима щелочь высокой чистоты. Понадобилось разработать способ, при котором хлор не находится вблизи катода, а это значит, что катодное и анодное пространства должны быть разделены. Существуют три метода, в которых это требование учтено с колоколом, диафрагменный и ртутный. Здесь мы рассмотрим прежде всего последний способ, который наиболее распространен в ГДР и в частности применяется на химическом комбинате в Биттерфельде и химиче-38 ском заводе в Нюнхрице. [c.38]

    Промышленное производство хлора и каустической соды э.тек тролизом растворов поваренной соли осуществляется двумя основ ными методами диафрагменным и ртутным. При диафрагменном электролизе основной процесс — электролиз — происходит в одну -стадию, причем на аноде получается газообразный хлор, а на твердом катоде — в катодном пространстве, отделенном от анодного диафрагмой, — образуется электролитическая щелочь, содержащая 100—140 г/л NaOH, 160--190 г/л Na l и газообразный водород. Дальнейшая переработка электролитической щелочи заключается в ее упарке, при которой из раствора выпадает поваренная соль н получается раствор, содержащий 620—750 г/л NaOH. Выпавшую при упарке электролитической щелочи поваренную соль растворяют в воде, и рассол, называемый обратным рассолом, вме сте с сырым рассолом подвергают очистке и направляют на электролиз. [c.18]


Смотреть страницы где упоминается термин Хлор и щелочи, производство метод с ртутным катодом: [c.9]    [c.309]   
Технология электрохимических производств (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Производство методы

Хлор и щелочи, производство

Щелочи

ртутный



© 2025 chem21.info Реклама на сайте