Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь электронная

    Влияние на прочность связи электронов с ядром оказывает также взаимное отталкивание электронов одного и того же уоя и в особенности одной и той же орбитали. [c.34]

    Поскольку повышение температуры благоприятствует диссоциации воды, она должна представлять собой эндотермический процесс (протекающий с поглощением тепла). Из приложения 3 следует, что АЯд (. . ц о = + 55,90 кДж моль . Такая энергия требуется, чтобы в молекуле воды разорвать одну связь О—Н, причем аба принадлежавшие этой связи электрона остаются на атоме кислорода. [c.211]


    В предыдущих главах было показано, что энергии ионизации, сродство к электрону и электроотрицательности атомов всех элементов удается объяснить на основе рассмотрения орбитальной электронной структуры атомов. Теперь попытаемся связать электронное строение атомов с химическими свойствами элементов и их соединений. Начнем с обсуждения (и составления уравнений) реакций, в которых одни реагенты теряют, а другие приобретают электроны (окислительно-восстановительные реакции). За- [c.415]

    Металлическая связь. Электронный газ, электронные зоны и электропроводность. [c.600]

    С увеличением ионности связи электронное окружение приобретает сферическую симметрию (где = 0) и величина e Qq g уменьшается. Как показывает уравнение (14.22), гибридизация р-орбитали с 5-орбиталью приводит также к уменьшению e Qq . Смешивание 5-орбитали с р-орбиталью снижает градиент поля, поскольку х-орбиталь сферически симметрична. В ковалентной молекуле увеличение градиента поля вызвано вкладом /-орбиталей в связывание. [c.272]

    Неизменно верят в то, что сдвиг в энергиях связи электронов оболочки обусловлен как зарядом на исследуемом атоме, так и зарядами на других атомах в молекуле. В этой модели потенциала сдвиг [c.347]

    Обсуждалась теоретическая основа уравнения (16.26). Можно показать, что, если приближение нулевого дифференциального перекрывания допустимо и если выполняется теорема Купманса (или при постоянном расхождении), для химических сдвигов энергий связей электронов оболочки [1, 49] получается уравнение, аналогичное уравнению (16.26). Уравнение (16.26) было также модифицировано различными способами. В одном случае для объяснения различных плотностей валентных электронов фактически был разложен член /сйд. Таким образом, для атома второго периода должен быть один член для 25-электронной плотности, к (2з) 6д (25), и один для 2р-электронной плотности, к (2р) 5д (2р). Нет необходимости говорить, что модель с большим числом параметров дает лучшее совпадение. [c.349]

    Интересной вариацией темы коррелирования энергий связи электронов оболочки с другими молекулярными характеристиками является тонкая концепция эквивалентных оболочек [55]. Этот подход возник, вероятно, из желания построить термохимический цикл (подобный ци- [c.349]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]


    Прежде чем закончить обсуждение химических сдвигов в энергиях связи электронов оболочки, вкратце рассмотрим данные РФС по соединениям со смешанной валентностью , которые обсуждались в гл. 10. Старейшим из известных координационных комплексов является [c.352]

    Особая форма связи переходная форма между атомной и ионной связями. Образуется в результате различной силы притяжения связующих электронов ядрами связанных атомов. Молекулы с такой связью имеют значительную полярность. [c.54]

    Кроме указанных факторов некоторое влияние на прочность связи электронов в атоме имеет взаимное отталкивание электронов, принадлежащих к одному и тому д<е слою. Этот эффект также иногда называют экранированием. Такое отталкивание особенно сильно, когда два электрона с противоположными спинами находятся на одной орбитали. [c.42]

    Перекрывание электронных облаков нельзя рассматривать как простое наложение электронного облака Од ого изолированного атома на электронное облако другого изолированного атома. Поскольку складываются волновые функции, определяемая величиной электронная плотность между атомами будет больше суммы плотностей электронных облаков изолированных атомов для тех же расстояний от ядра. При образовании химической связи электронные облака как бы вытягиваются навстречу друг другу. [c.80]

    Кл.м. В рамках приведенной схемы это можно объяснить некоторым сдвигом образующих связь электронных пар к атому кислорода. Ниже дано более точное, описание строения молекулы СО по методу молекулярных орбиталей также приводящее к выводу, что связь в этой молекуле тройная. [c.96]

    Если данный элемент образует ионы различного заряда, то поляризуемость иона будет тем меньше, чем больше его заряд, так как рост последнего приводит к уменьшению радиуса иона и упрочнению связи электронов с ядром. [c.112]

    Метод валентных связей указывает на возможность существования борина ЕШз, однако это соединение не может быть выделено и существует только. как промежуточный продукт в некоторых химических реакциях. Молекула ВНз неустойчива (ДО = 109 кДж/моль), так как в ней 6 связующих электронов образуют протяженные электронные облака со сравнительно малой плотностью, которые не обеспечивают необходимое связывание — не экранируют полностью положительные заряды ядер (по этой же причине не очень стабильны гидриды бериллия и магния). Частицы ВНз взаимодействуют друг с другом образуя димер [c.329]

    В области высокоэнергетических взаимодействий на первый план выступают индивидуальные свойства атомов, молекул, ядер [32, 33]. Свойства атомов характеризуют величиной заряда ядра Ze (е - элементарный заряд, Z - атомный номер). Размеры атома определяются его электронной оболочкой. Порядок величин линейных размеров атома 10 см, поперечного сечения 10 1 см и объема Ю см . Масса атома равна произведению его массового числа на атомную единицу массы = М1,66 10 кг. Энергия связи электронов в атоме [c.41]

    Энергия связи электронов в атомах. Электронные оболочки. Энергией связи банного электрона в атоме называют количество энергии, необходимое для отделения его от атома. [c.32]

    Квантовое состояние атома с наименьшей энергией 1 называется нормальным или основным. Остальные квантовые состояния с более высокими уровнями энергии Е2, з. 4. называются возбужденными. Электрон в основном состоянии связан с ядром наиболее прочно. Когда же атом находится в возбужденном состоянии, связь электрона с ядро.м ослабевает вплВть до отрыва электрона от атома при оо. [c.15]

    Таким образом, по степени смещения (поляризации) связующего электронного облака связь может быть неполярной, полярной и ионной. Неполярная и ионная связи представляют собой крайние случаи полярной связи. По сравнению с последней они встречаются зна- Чртельно реже. [c.81]

    О кремния к алюминию и далее к s-элементам магнию и натрию число валентных электронов уменьшается, а число свободных валентных эрбиталей увеличивается. Это понижает прочность двухцентровой связи и усиливает тенденцию к образованию нелокализованной, а в пределе — металлической связи (электронного газа). [c.233]

    Молекулы брома и его аналогов двухатомны. Как видно из приведенных данных, с увеличением в ряду Вгг — межъядерного расстояния i/ээ энергия диссоциации молекул АЛдисс.э, уменьшается, что объясняется уменьшением степени перекрывания связующих электронных облаков. В этом ряду увеличивается поляризуемость молекул, а следовательно, усиливается способность к межмолекулярному взаимодействию. Поэтому в ряду Вгг — I-j — Atj возрастают температуры плавления и кипения. В обычных условиях бром — красно-коричневая жидкость, иод — черно-фиолетовые кристаллы с металлическим блеском, астат — твердое вещество металлического вида. [c.299]


    После образования пептидной связи электроны двойной связи С=0 дело-.кализуются на пептидную связь С—Ы, которая становится частично двоесвязной. Это вынуждает пептидное звено (рис. 21-13) оставаться плоским. Пептидное звено является краеугольным камнем всех белковых структур и представляет собой один из важнейших примеров делокализации я-связи в химических системах. [c.300]

    Большой вклад в развитие представлений о механизме каталитического действия внесли подходы, развитые рядом авторов теория активных ансамблей Кобозева [5], химическая теория активной поверхности Рогинского [6], теория Борескова промежуточного химического взаимодействия в гетерогенном катализе и зависимости удельной каталитической активности от химического состава и строения катализатора [7], теория Писаржев-ского о связи электронных свойств твердого тела с его каталитической способностью [8], электронные теории кристаллического поля и поля лигандов [91, теория поверхностных соединений координационного и кластерного типов [9] и др. [c.11]

    В 1957 г. Сигбан и сотр. [45] зарегистрировали химический сдвиг в энергиях связи 15-электронов меди. Было найдено, что сдвиг в (1х) между Си и СиО составляет 4,4 эВ (по сравнению с 8979 эВ), но в то время не было дано объяснение сдвигу. В начале 60-х годов группа Сиг-бана обнаружила сдвиги в энергиях связи 2х- и 2р-электронов серы [46]. Было установлено, что энергии связи электронов оболочки можно скоррелировать с состоянием окисления серы. С тех пор были проведены многочисленные исследования в том же направлении. Например, на [c.346]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Отметим, что для соединений олова и железа удалось обнаружить линейные корреляции между энергиями связи электронов оболочки и мёссбауэровскими изомерными сдвигами [53]. Бьша также установлена корреляция связей электронов оболочки хлора с частотами ядерного квадрупольного резонанса [54]. [c.349]

    Наиболее распространенным типом связи является двухэлек-тропная связь (а-связь). В зависимости от электроотрицательности атомов, образующих эту связь, электронные орбитали могут быть симметричными (при равной электроотрицательности) или смещенными так, что электронная плотность будет выше у более электроотрицательного атома. Смещение электронной плотности может иметь место и в случае связи, образованной одинаковыми атомами, которые соединены с атомами или группами атомов, имеющими разную электроотрицательность (индуктивный эффект). Так, например, двойная связь в бутене-2 не поляризована, а в пропилене и хлористом аллиле — поляризована  [c.113]

    Эффективные заряды. При образовании химической связи электронная плотность около атомов меняется. Это изменение можно учесть, ириписав атому некоторый эффективный заряд б (в единицах заряда электрона). Эффективные заряды, характеризующие асимметр1гю электронного облака, условны, так как электронное облако делокализовано и его нельзя разделить между ядрами. [c.72]

    С2Н2 имеет линейную структуру. Две р-орбитали атома углерода, оставшиеся негибридизованными, располагаются под углом ЭО друг к другу. Этн орбитали образуют две я-связи, электронные облака которых располагаются около двух взаимно перпендикулярных плоскостей. [c.92]

    При общем сходстве свойств рассматриваемых элементов имеется определенная закономерность в их изменении от Ре.к N1. В ряду Ре, Со, N1 вследствие -сжатия уменьшаются радиусы ионов у Ре + г,- = 74, у 00 + г,- = 72, у N 2+ =69 пм. В связи с этим при переходе от Ре + к N1=+ ослабевают основные свойства гидроксидоь Э(0Н)2 и- возрастает устойчивость комплексов, что связано также с заполнением электронами -орбиталей с низкой энергией (гри октаэдрическом окружении лигандами). Рост заряда ядра ведет к более прочной связи электронов с ядром, поэтому для кобальта, и особенно для никеля, степень окисления +3 менее характерна, чем для желеча. Для железа известна степень окисления + 6 (КгРе04), которая не наблюдается у Со и N1. [c.560]


Смотреть страницы где упоминается термин Связь электронная: [c.15]    [c.65]    [c.265]    [c.440]    [c.469]    [c.535]    [c.259]    [c.332]    [c.347]    [c.348]    [c.348]    [c.348]    [c.350]    [c.595]    [c.102]    [c.116]    [c.125]    [c.164]   
История органической химии (1976) -- [ c.61 ]

История органической химии (1976) -- [ c.61 ]

Органическая химия Том 1 (1963) -- [ c.48 ]

Органическая химия Том 1 (1962) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон связи



© 2024 chem21.info Реклама на сайте