Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро атомное энергия связи электронов

    В 1912 г. Генри Мозли (1887-1915) обнаружил, что частота рентгеновского излучения, испускаемого элементами при бомбардировке электронным пучком, лучше коррелирует с их порядковыми номерами, чем с атомными массами. Закономерная взаимосвязь между порядковым номером элемента и частотой (или энергией) рентгеновских лучей, испускаемых элементом, определяется внутриатомным строением элементов. Как мы узнаем из гл. 8, электроны внутри атома располагаются по энергетическим уровням. Когда элемент бомбардируется мощным пучком электронов, атомные электроны, находящиеся на самых глубоких энергетических уровнях, или, иначе, электроны из самых внутренних оболочек (ближайших к ядру), могут вырываться из атомов. Когда внешние электроны переходят со своих оболочек на образовавшиеся вакансии, атомы излучают энергию в форме рентгеновских лучей. Рентгеновский спектр элемента (набор частот испускаемого рентгеновского излучения) содержит в себе информацию об электронных энергетических уровнях его атомов. В настоящий момент для нас важно то, что эта энергия зависит от заряда ядра атома. Чем больше заряд атомного ядра, тем прочнее связаны с ним самые внутренние электроны атома. Тем большая энергия требуется для выбивания из атомов этих электронов и, следовательно, тем большая энергия испускается, когда внешний электрон переходит на вакансию во внутренней электронной оболочке. Мозли установил, что частота испускаемого при этом рентгеновского излучения (ее обозначают греческой буквой ню , V) связана с порядковым номером элемента Z соотношением [c.311]


    В области высокоэнергетических взаимодействий на первый план выступают индивидуальные свойства атомов, молекул, ядер [32, 33]. Свойства атомов характеризуют величиной заряда ядра Ze (е - элементарный заряд, Z - атомный номер). Размеры атома определяются его электронной оболочкой. Порядок величин линейных размеров атома 10 см, поперечного сечения 10 1 см и объема Ю см . Масса атома равна произведению его массового числа на атомную единицу массы = М1,66 10 кг. Энергия связи электронов в атоме [c.41]

    Первый из них — фотоэлектрический эффект (рис. IX.1, а) — процесс, при котором фотон, падающий на атом, передает всю свою энергию какому-либо связанному электрону атома (чаще всего им оказывается наиболее близкий к ядру 7(Г-электрон). При этом нарушается равновесие, существующее между электроном и атомным остовом вещества, происходит разрыв связи электрон— атом. Оторванный электрон вылетает со скоростью V, определяемой разницей между энергией падающего у-кванта и энергией связи электрона в атоме  [c.176]

    В случае излучений с большой энергией можно пренебречь величиной энергии связи электронов с ядрами в облучаемом веществе, за исключением электронов в самых близких к ядру оболочках у атомов большого атомного веса. Энергия связи электронов колеблется от 10 до 10000 еУ. [c.17]

    Вторая основная характеристика атома — массовое число, равное сумме чисел протонов и нейтронов в ядре. Массовое число близко по величине к массе атома, выраженной в атомных единицах. Это получается в результате компенсирующего влияния двух факторов. С одной стороны, массы нуклонов (а. е. м.), как видно из табл. 1, несколько превышают единицу (на величину порядка 0,008). С другой стороны, происходит примерно такое же уменьшение массы в расчете на один нуклон при слиянии нейтронов и протонов в атомное ядро. Это уменьшение, известное как дефект массы, в соответствии с законом об эквивалентности массы и энергии (1.23) определяет энергию связи атомного ядра, т. е. энергию, которую необходимо затратить для полного расщепления ядра на составляющие его протоны и нейтроны. Например, энергия связи ядра гелия составляет 28,2 МэВ (28,2 млн. электрон-вольт или мегаэлектрон-вольт), В соответствии с уравнением (1.23) дефект массы при образовании ядра гелия составляет [c.24]

    Теперь рассмотрим, как проявляется различное строение внутренних электронных оболочек атомов инертных газов на их параметрах и характеристиках, включая химические свойства. Прежде всего оказывается, что возрастание атомного радиуса от гелия к радону не происходит монотонно с увеличением атомного номера, а обнаруживает совершенно закономерные изломы (рис. 26). Атомные радиусы аргона и ксенона оказываются повышенными, а неона, криптона и радона уменьшенными по сравнению с общим монотонным возрастанием. Аналогично изменяются параметры решеток неона—радона, а также их атомные объемы и первые ионизационные потенциалы, характеризующие энергию связи электронов внешней -оболочки с ядром, по-разному экранированным внутренними оболочками. С возрастанием атомного номера от гелия к радону потенциалы ионизации понижаются, но опять-таки немонотонно, с теми же характерными изломами, что и атомный радиус. Плотности инертных газов в твердом и в жидком состояниях [80] изменяются более монотонно (см. рис. 26), однако показывают слабые, но столь же закономерные отклонения от монотонного изменения, что и атомные радиусы. При переходе к плотности жидкости в критических условиях начинает превалировать монотонное изменение свойств, которое для газообразного состояния превращается уже в монотонное изменение, такое же, как увеличение атомного веса с возрастанием атомного номера. [c.94]


    Из атомов элементов одного периода наибольшим радиусом обладают атомы элемента, стоящего в начале периода, т. е. атомы щелочного металла. С возрастанием заряда ядра сначала атомные радиусы уменьшаются, так как растет энергия связи электронов с ядром. А это влечет за собой стягивание электронов ближе к ядру. Радиус атома достигает минимума, затем снова возрастает и достигает очередного максимума у щелочного металла, начинающего следующий период. [c.50]

    Степень деформации атомов определяется напряженностью возмущающего поля и величиной энергии связи электронного облака с атомным ядром. В случае прочной связи электронов с ядром (малая поляризуемость) наблюдается небольшая деформация. При слабой связи электронов с ядром (большая поляризуемость) сферическая симметрия иона может быть значительно нарушена. [c.13]

    Критическое поглощение рентгеновских лучей. Выше уже упоминалось о резких изменениях коэффициентов поглощения при тех значениях энергии фотонов, которые соответствуют энергии связи электронов в атомах поглощающей среды. Наличие таких скачков поглощения и изменение их положения при переходе от элемента к элементу можно использовать для определения энергии характеристических рентгеновских лучей. Для того чтобы лучше уяснить основы так называемого метода критического поглощения, напомним, что испускание характеристических рентгеновских лучей обусловлено переходом электрона с одной из орбит на вакантное место в оболочке, расположенной ближе к ядру, например с Ь-оболочки на -оболочку . С другой стороны, для того чтобы произошло фотоэлектрическое поглощение фотона, необходимо, чтобы его энергия была достаточна для преодоления энергии связи электрона на данном уровне и перевода его на один из внешних вакантных уровней или удаления из атома. Отсюда следует, что всякий элемент является плохим поглотителем своих собственных характеристических рентгеновских лучей. Действительно, энергия ЛГ -излучения данного элемента равна разности энергий связи электрона на К- и Ь-уровнях и поэтому недостаточна для перевода электрона с / -уровня на один из свободных внешних уровней (или, тем более, для полного отделения от атома). Однако энергия связи электрона на данном уровне понижается с уменьшением X. Вследствие этого энергия а-излучения элемента X может оказаться близкой (но несколько выше) к энергии связи электрона в / С-оболочке одного из соседних элементов с более низким атомным номером это приводит к избирательному поглощению излучения этим элементом (в отличие от элементов с более высокими значениями X). Таким образом, два рядом стоящих элемента обладают существенно различными коэффициентами поглощения данного Х-излучения поглощение в наиболее эффективном элементе называют критическим поглощением. Критическое поглощение может наблюдаться не только для Г-линий, но также и для -линий, особенно в случае тяжелых элементов. [c.119]

    Для возбуждения атомных ядер требуются огромные энергетические воздействия извне, на несколько порядков превосходящие энергии химических связей в мо.чеку-лах и энергии связей электронов в атомах. Поэтому в условиях существования атомов, молекул и их ионов атомные ядра находятся в своем низшем энергетическом [c.195]

    Стабильные и радиоактивные изотопы. В настоящее время известно около 280 стабильных изотопов, принадлежащих 81 природному элементу, и более 1500 радиоактивных изотопов, 107 при родных и синтезированных элементов. При этом у элементов с нечетными I не более двух стабильных изотопов. Число нейтронов в таких атомных ядрах, как правило, четное. Большинство элементов с четным 2 характеризуется несколькими стабильными изотопами, из которых не более двух с нечетными А. Наибольшее число изотопов имеют олово (10), ксенон (9), кадмий (8) и теллур (9). У многих элементов по 7 стабильных изотопов. Такой широкий набор стабильных изотопов у различных элементов связан со сложной зависимостью энергии связи ядра от числа протонов и нейтронов в нем. По мере изменения числа нейтронов в ядре с определенным числом протонов энергия связи и его устойчивость к различным типам распада меняются. При обогащении нейтронами ядра излуч-ают электроны, т. е, становятся р -активными с превращением нейтрона в ядре в протон. При обеднении ядер нейтронами наблюдается электронный захват или р+-активность с превращением протона в ядре в нейтрон. У тя- [c.50]

    Таким образом, кривые атомных радиусов элементов, как и ионизационные потенциалы, характеризующие энергию связи электрона с ядром и внутренними оболочками, дают возможность подразделения элементов на подгруппы и подтверждают смещения элементов в рядах аналогов. Смещения многих лантаноидов и актиноидов, которые не могут быть сделаны по их ионизационным потенциалам из-за недостаточной изученности их оптических спектров, определенно следуют из экспериментально найденных атомных радиусов этих элементов. [c.126]


    Примечание. т-Лучи возникают при естественных и искусственных превращениях атомных ядер, при превращении пар электрон — позитрон (см. стр. 468) и др. у-Лучи представляют поток гамма квантов ( -квантов). При столкновении у-кванта с ядром атома или электроном наблюдается ряд явлении фотоэффект", эффект Комптона и др. При фотоэффекте f-квант передает электрону атома полностью свою энергию е (см. стр. 465 и 475) в результате электрон вылетает из атома с кинетической энергией = —W (W—энергия связи электрона в атоме). [c.471]

    Полная масса атома называется его атомной массой и приблизительно равна сумме масс всех протонов, нейтронов и электронов, входящих в состав атома. Когда из протонов, нейтронов и электронов образуется атом, часть их массы превращается в энергию, которая выделяется в окружающую среду. (Этот дефект массы и есть источник энергии в реакциях ядерного синтеза). Поскольку атом невозможно разделить на составляющие его элементарные частицы, не подводя к нему извне энергию, которая эквивалентна исчезнувшей массе, эта энергия называется энергией связи атомного ядра. [c.18]

    Атом водорода устроен наиболее просто — в поле ядра движется только один электрон. На так называемом одноэлектронном приближений основано описание много-электронного атома. Для полного описания состояния электрона в атоме недостаточно одного только главного квантового числа п, так как состояние электрона в одноэлектронном и многоэлектронном атоме определяется четырьмя квантовыми числами п, I, пг1 и т,. Каждый отдельный набор -квантовых чисел соответствует конкретному пространственному распределению вероятности, т. е. определенной стационарной орбитали. Квантовые числа, как и энергия электрона, могут принимать не любые, а только определенные дискретные (прерывные) квантующиеся значения. Соседние значения квантовых чисел различаются на единицу. Как уже указывалось, п — главное квантовое число — характеризует энергию электрона и размеры атомной орбитали. Оно может принимать целые значения 1, 2, 3, 4, 5, 6 и т. д. до оо. Значение п=1 отвечает уровню с самой низкой энергией (т. е. наибольшей устойчивости электрона в атоме). На этом уровне электроны связаны с ядром наиболее прочно и находятся на наименьшем среднем расстоянии от ядра. [c.13]

    Для фотонного излучения с энергиями частиц более 1 МэВ, т.е. при энергии большей, чем энергия связи атомных электронов с ядром, наблюдается комптоновский эффект. В этом процессе фотоны как бы упруго сталкиваются со свободными или слабо связанными электронами, передавая им часть своей энергии и импульса. Изменение длины волны фотона при рассеянии на угол О равно [c.44]

    Изучение электронного строения атомов начинается с описания в рамках одноэлектронного приближения оболочечной модели. Переходя от теории атома к теории молекул, естественно сохранить ту же последовательность изложения. Под атомными функциями далее понимают функции, точка центрирования которых совпадает с ядром. Явный вид волновой функции в общем случае отличен от вида функции свободного атома. Будем считать, что атомная задача решена известны численные характеристики различных атомных величин, включая и значения орбитальных энергий. Особый интерес представляют слабосвязанные атомные электроны, волновые функции которых наиболее существенным образом деформируются в ходе образования химической связи. Разделение электронов на более и менее существенные не всегда однозначно, приходится делать те или иные допущения, справедливость которых впоследствии проверяется на уровне точных расчетов. Примером тому может служить исследование роли -электронов атомов переходных металлов в энергии связи молекул. [c.208]

    ЭВ). Это энергия, которую приобретает электрон, ускоренный электрическим полем на участке с разностью потенциалов в 1 В. Различают первый, второй и т. д. потенциалы ионизации, при этом энергия отрыва первого электрона меньше энергии отрыва второго электрона и т. д., т. е. ПИ <ПИ2<ПИз<.... С увеличением числа отрываемых электронов растет заряд образующегося положительного иона,"который сильнее притягивает электрон. Сумма всех последовательных ПИ составляет полную электронную энергию атома. Для большинства атомов ПИ измерены с помощью атомных спектров. Так как ПИ служит мерой прочности связи электрона с ядром, то он зависит от заряда ядра, т. е. от порядкового номера элемента, и имеет ярко выраженный периодический характер. [c.228]

    На рис. 5.3 схематически изображено образование молекул Оа, Н2О и N3. Видно, что в молекуле Оа облака одной пары валентных 2/7-электронов перекрываются в направлении, соединяющем ядра атомов, образуя а-связь. Облака другой пары 2/7-электронов ориентированы параллельно и перекрываются в стороне от оси, соединяющей атомные ядра, образуя я-связь. Эти связи неравноценны. л-Связь слабее, чем (Т-связь. Общая энергия связи в молекуле О составляет 494 кДж/моль. Соединяя атом кислорода с двумя атомами водорода, получаем молекулу воды. Присоединение атомов Н к атомам О произойдет вдоль направления восьмерок, в результате чего возникает треугольная форма молекулы НаО. Действие сил отталкивания между атомами водорода [c.121]

    Для фотонного И.И. имеют место упругое рассеяние (классич. рассеяЕше) и неупругие процессы, основные из к-рых - фотоэффект, эффект Комптона и образование пар электрон-позитрон. При фотоэффекте фотон поглощается атомом среды с испусканием электрона, причем энергия фотона за вычетом энергии связи электрона в атоме передается освобожденному электрону. Вероятность фотоэффекта с /С-оболочки атома пропорциональна 2 (2-ат, номер элемента) и быстро убывает с ростом энергии фотона (кривая 1 на рис. 1). В случае эффекта Комптона происходит рассеяние фотона на одном из атомных электронов при этом уменьшается энергия фотона, изменяется направление его движения и происходит ионизация атомов среды. Вероятность комптоиовского рассеяния пропорциональна г и зависит от энергии фотонов (кривые 2 и 3 на рис. 1). При энергии фотона выше 1,022 МэВ вблизи ядра становится возможным образование пар электрон-позитрон. Вероятность этого процесса пропорциональна 2 и увеличивается с ростом энергии фотона (кривая 4 иа рис. 1). При энергии фотона до 0,1 МэВ преобладает классич. рассеяние и фотоэффект, при энергии от 0,1 до 10 МэВ-эффект Комптона, при энергии выше 20 МэВ-образование пар. [c.254]

    Металличность элементов. А еталлические и неметаллические (металлоидные) свойства элементов п образуем ) ими простых веществ в основном зависят от числа электронов на внешних энергетических уровнях в оболочке атолюв, т. е. от степени застроенности их и от энергии связи электронов с атомным ядром. [c.59]

    В атомной физике поступают аналогично. Здесь масштабом для измерения энергии связи электронов в оболочке атома служит энергия свободных электронов, которые ускоряются с помощью электрического по ля. В качестве единицы энергии принимается такая энергия, которую приобретает один электрон, проходя разность потенциалов 1 в. Эта единица, как уже говорилось во Введении , называется электронвольтом эё). Она является подходящей единицей измерения энергии для атомной оболочки, так как по порядку величины совпадает с энергиями связи электронов в оболочке атома. Как будет видно в дальнейшем, энергия связи частиц в ядре атома, грубо говоря, в миллион раз больше. По этой причине в ядерной физике применяют единицу измерения в миллион раз большую, чем 1 эв, т. е. 10 эв (или один мегаэлектронвольт — Мэе). Это такая энергия, которую приобретает один электрон, проходя разность потенциалов 1 Мв (один миллион вольт). Для измерения энергии рентгеновых лучей часто используют единицу, которая в 1000 раз больше 1 эв, т. е. 1000 эв или 1 кэв. Верхняя граница шкалы используемых в физике энергий в последнее время поднимается вс выше. [c.10]

    Важная особенность, позволяющая отнести элемент к категории металлов или неметаллов,— стремление образовать устойчивую внешнюю электронную конфигурацию у металлов — путем отдачи, а у неметаллов — за счет присоединения электронов другого атома. В группе при переходе к элементам больших периодов усиливается способность к отдаче электронов, а при движении вдоль периода — противоположная те тденция. Атомные радиусы закономерно изменяются по периоду. Самый большой атом — у щелочных металлов. Затем размер атома постепенно уменьшается. Возрастание заряда ядра при неизменности числа слоев электрон( в приводит к тому, что эффективный положительный заряд ядра, действующий на внешние электроны, возрастает и компенсируется электроном не полностью. Тогда у атома проявляется стремление к присоединению дополнительных электронов, так как в этом случае устойчивость отрицательного иона больше, чем атома. Особенно четко проявляется это в конце периода. Влияние противоположных тенденций приводит к сходству элементов по дпагоналн. Так, по мере все более полного и глубокого изучения свойств элементов явственней становится сходство химии лития и магния, бериллия и алюминия, бора и кремния и т. п. Такое сходство обусловлено тем, что увеличение энергии связи электронов с ядром при сдвиге вправо по периоду компенсируется ослаблением этой связи при переходе к нижерасположенному периоду. [c.173]

    Первый способ основан на определении частоты границы атомного спектра. Согласно условию частот Бора (32), энергия, затрачиваемая на возбуждение электрона от низшего нормального уровня "о до более высокого с квантовым числом т, связана с частотой соответствующей спектральной линии соотношением Е — Еа==к . С увеличением т уменьшается энергия связи электрона с ядром, и при т—>-оо она обращается в нуль, т. е. элегстрон освобождается из атома. Поэтому разность 00 — о = /г>оо (voo — предельная частота) совпадает с энергией ионизации У. Умножив на постоянную Авогадро Л/ц для перехода от одного атома к грамм-атому и заменив на [c.92]

    В атомной и ядерной физике энергию часто выражают в единицах, называемых электрон-вольтами. Один электрон-вольт равен той энергии, которую приобретает электрон, двигаясь под действием ускоряющего напряжения в один вольт. Энергия связи электрона с протоном в атоме водорода, находящемся в нормальном состоянии, равна 13,6 электрон-вольта. Энергия связи с ядром электрона, находящегося в атоме урана в ближайшей к ядру оболочке, примерно в (92) раза больше и близка к 115 тыс. электрон-вольт или 115 килоэлектронвольт (кэв). Энергия связи нейтронов и протонов в ядрах еще в десятки и сотни раз выше и обычно близка к 8— 10 млн. электрон-вольт или 8—10 мегаэлектрон-вольт (мэв). Если выражать массу в единицах атомного веса, а энергию — в мегаэлектрон-вольтах, то численно взаимосвязь между массой и энергией будет заключаться в соответствии между одной массовой единицей и энергией, равной 931 мэв. [c.48]

    Молекула Ы . Конфигурация Li2[(als) (a ls) (a 2s) J (терм 41g). Первые четыре электрона находятся на внутренних als-орбиталях, образованных из АО АГ-слоя (Is-орбиталей атомов лития). Их размещение подобно размещению в молекуле Неа (см. рис. 24), когда равное число электронов на als- и a ls-MO приводит к отсутствию связи. Можно считать и здесь, что эти МО не вносят вклад в энергию связи молекулы, и электроны на этих орбиталях сохраняют в молекуле характер атомных АГ-электронов, принадлежа попарно соответствующим ядрам (/С-остов). Этому отвечает запись конфигурации в форме Li2[/ ( r2s) ], из которой видно, что связь обусловлена парой электронов, находящихся на связывающей а25-орбитали. Точный квантовомеханический расчет действительно показывает, что als- и а Ь-орбитали имеют вид, близкий к виду двух атомных орбиталей, каждая из которых сосредоточена в основном вокруг одного из двух ядер (рис. 26), и электроны на этих орбиталях условно считают несвязывающими, как четыре электрона в Неа. Молекула Ыг диамагнитна (спины электронов спарены). [c.78]

    Кривые термохимических электроотрицательностей, по Полингу (рис. 3), и электроотрицательностей, по Горди (рис. 4), вычисленные с учетом характерных валентностей и атомных радиусов, представляют такие же убедительные аргументы для разделения элементов на главные и побочные подгруппы и для смещений их в группах, как и ионизационные потенциалы. В связи с понижением валентностей в VII и VIII группах наклоны кривых электроотрицательностей приобретают иной характер чем кривые ионизационных потенциалов. Первые характеризуют тенденцию атомов к присоединению электронов, а вторые — энергию связи электронов с атомом. Повышенная энергия связи внешних электронов с ядром у переходных металлов 4-го периода — ванадия, хрома, марганца, железа — по сравнению с соответствующими металлами 5-го и [c.36]

    Электроны, заполняющие самую внутреннюю 1 -оболочку, экранируют ядро по отношению к более внешним электронам, постепенно заполняющим при возрастании атомного номера следующую 2 -подобо-лочку судя по первым потенциалам ионизации, внешние электроны этих оболочек у лития и бериллия слабо связаны с ядром (см. рис. 5). Энергия связи электронов, заполняющих 2]э-уровень, сильно повышается с увеличением заряда ядра от 5+ (бор) до Ю-Ь (неон), так как внутренние 15 - и 25 -оболочки относительно слабо экранируют ядро. Заполненная же [c.48]

    Литий. Атом лития имеет один валентный электрон, поэтому молекула может иметь не больше двух связывающих электронов. Эти электроны спарены на низшей доступной для них молекулярной орбитали, о,. Следовательно, в молекуле Li2 имеется одна ковалентная связь. Длина этой связи (2,67 А) превышает длину связи в молекуле Н2 (0,74 А), потому что в молекуле лития связь образуется более протяженными атомными орбиталями сп = 2, анесп = 1. По этой же причине связь в слабее, чем в Н2 энергия связи в 2 равна ПО кДж мoль , а в Н2-432 кДж моль Ч Ядра атомов лития расположены дальше друг от друга, электронное облако распределено в большем объеме и силы притяжения между электронами и ядрами соответственно ослаблены. [c.525]

    Ковалентная связь. На рис. 22 представлено образование связывающей и разрыхляющей МО молекулы Нг из АО, а также диаграмма плотности вероятности (плотности электронного облака). В нижней части рис. 22, а и б приведены условные контурные диаграммы электронной плотности, напоминающие топографические карты. В пространстве между ядрами значения ф5 и ф5р выше, чем были бы они для изолированной атомной орбитали. Соответственно выше здесь и плотность электронного облака. Это означает, что для молекулярной орбитали вероятность пребывания электрона в межъядерной области велика. Отрицательный заряд между ядрами притягивает к себе положительные заряды обоих ядер и в то же время экранирует их друг от друга, уменьшая их взаимное отталкивание. В результате наблюдается значительное понижение энергии электрона в поле двух ядер молекулы по сравнению с энергией электрона в атоме. Общее понижение энергии —результат преобладающего понижения потенциальной энергии электрона. Поэтому система из двух ядер и электрона оказывается более устойчивой, чем система разъединенных ядер, иными словами, вследствие понижения потенциальной энергии электрона возникает химическая связь. Характерной ее особенностью является коллективизирозание электрона всеми (здесь двумя) ядрами молекулы. Такая связь называется ковалентной. В основе хими- [c.69]

    Электрону, находящемуся па связываюшей орбитали, соответствует электронное облако с повышенной электронной плотностью в межъ-ядерном пространстве, в результате чего энергия взаимодействия электрона с ядрами оказывается ниже, чем энергия того же электрона на исходной атомной орбитали, где он взаимодействует только с одним ядром. Поэтому нахождение электрона на связывающей молекулярной орбитали приводит к сближению ядер до некоторого расстояния, на котором его связывающее действие уравновешивается возрастающей при сближении ядер силой их электростатического отталкивания. В результате этого между атомами возникает химическая связь. Простейшей частицей с химической связью является молекулярный ион Нг, в котором один электрон на связывающей орбитали взаимодействует с двумя ядрами водорода (протонами). [c.10]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]

    Атомные орбитали, по Слейтеру. - Положительное значение по оси г указывает наяравление от одного ядра к другому, Орбитальная энергия связана с оиределеянон спин-орбиталью и состоит из а) кинетической энергии электрона на спин-орбитали б) потенциальной энергии притяжения между электроном на спин-орбитали и ядрами в) по-тенциальной энергии отталкивания между электроном на спии-орбнталн к всеми остальными электронами системы, находящимися на других спин-орбнталях. [c.150]

    При образовании химической связи электронная структура получившихся частиц принимает такую конфигурацию, которая отвечает наибольшей энергии связи. Это может произойти, при условии преодоления сил отталкивания (или так называемого энергетического барьера ) между реагирующими частицами. Силы отталкивания могут быть преодолены частицами, обладающими повышенным запасом энергии. Такие реакционноспособные частицы, обладающие определенным избытком энергии (по сравнению со средней величиной энергии всех частиц, характерной для данной температуры), называются активными. Такими молекулами могут быть наиболее быстрые , т. е. обладающие в момент столкнове-Ш1я большой кинетической энергией, возбужденные — у которых некоторые электроны находятся на более высоком энергетическом уровне (а не на нормальном) молекулы, внутреннее строение которых (например, расстояние между атомными ядрами) Отличается от наиболее устойчивого состояния Эти частицы обладают большой кинетической энергией, увеличенным расстоянием меж у атомными ядрами и др. [c.11]

    Ослабление у-излучения при прохождении его через вещество определяется в основном тремя процессами фотоэффектом, комптоновским эффектом и эффектом образования пар [8]. При фотоэффекте у-квант передает всю свою энергию одному из электронов атомной оболочки (рис. 6.1). Кинетическая энергия возбужденного электрона равна разности энергий у-кванта и энергии связи Р электрона в атоме. При комптоновском эффекте у-квант передает свободному электрону лишь часть своей энергии и при этом изменяет направление собственного движения. Энергия комптоновского электрона равна разности энергий падающих и рассеянных фотонов. При образовании пар у-квант превращается вблизи атомного ядра в позитрон и электрон в соответствии с законом эквивалентности массы и энергии. Этот процесс наблюдается только для у-квантов, обладзющих энергией болеё 1,01 МэВ. [c.305]

    Интересно, что тяжелые аналоги элементов-неметаллов — фосфор, сера, в отличие от азота и кислорода дающих локальные молекулы с кратными связями, образуют простые вещества, построенные за счет одинарных связей (например, одинарные связи Р—Р, 5—5 в молекулах Р4, 5в). Невыгодность образования кратных связей у фосфора, серы и их тяжелых аналогов объясняется уменьшением прочности таких связей по мере увеличения размеров атома (по сравнению с легкими аналогами). Это связано с уменьшением я-перекрывания орбиталей по мере роста их протяжснности, с увеличением электронного отталкивания при образовании кратных связей в условиях большого числа электронов. В то же время прочность одинарных связей неметалл—неметалл в группах при переходе от самых легких к более тяжелым элементам-аналогам увеличивается. Согласно современным данным [2] энергия одинарной связи О—О и N—N примерно на 100 ккал/моль меньше, чем энергия связи 5—5 и Р—Р соответственно. Однако возникающие при этом структуры отличаются от алмазоподобных и принадлежат к числу молекулярных. Это связано с несклонностью электронных оболочек атомов тяжелых неметаллов к 5р -гиб-ридизации (большое число электронных оболочек, удаленность наружных электронных слоев от атомного ядра). [c.249]


Смотреть страницы где упоминается термин Ядро атомное энергия связи электронов: [c.307]    [c.201]    [c.255]    [c.89]    [c.11]    [c.31]    [c.528]    [c.118]    [c.17]   
Учебник физической химии (1952) -- [ c.80 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная энергия

Атомное ядро

Связь связь с энергией

Связь энергия Энергия связи

Электрон связи

Энергия связи

Энергия электрона

Энергия электронная



© 2025 chem21.info Реклама на сайте