Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель шкалы кислотности

    Для стандартизации единой (универсальной, абсолютной), термодинамически строго обоснованной для всех растворителей шкалы кислотности рА, строящейся на основе значений термодинамических кон- [c.420]

    Есть растворители менее основные, чем вода серная кислота, муравьиная кислота. В таких растворителях шкала кислотности сдвигается в сильно кислотную сторону. [c.593]


    У некоторых растворителей шкала кислотности очень расширена у хлорбензола, ацетона, метилизобутилкетона, ацетонитрила и др. Кислотность СНзСЫ может быть обнаружена только в сильноосновной среде. В таких растворителях, как тетрагидрофуран, можно проводить реакции в чрезвычайно щелочной среде. [c.617]

    Значения 1е в различных растворителях дают величину смещения шкал кислотности в этих растворителях по отношению к шкале кислотности воды (см. рис. 124). [c.172]

    В табл. 7 приведены величины относительной шкалы кислотности некоторых растворителей и изменения кислотного ( 4 " д) и основного ( Д ) пределов этой шкалы по сравнению с шкалой воды. [c.94]

    Шкала кислотности растворителя. [c.124]

    Десятичный логарифм ионного произведения, взятый с отрицательным знаком, называют показателем ионного произведения. Он определяет шкалу кислотности растворителя, выраженную в единицах pH. Как видно, шкала кислотности воды составляет 14 единиц. В соответствии со шкалой кислотности воды на практике используют значения pH от О до 14, что дает возможность характеризовать кислотность растворов в области от 1 н. раствора ионов Н" " до 1 н. раствора ионов ОН . Это не означает, что не могут быть значения рН<0 и рН> 14 Если pH—— 1, то а + Ю, т. е. имеется примерно 10 н. раствор сильной кислоты. Если pH = 15, то рОН= — 1 и аон- = 10, т. е. имеется приблизительно 10 н. раствор щелочи. Однако на практике такие концентрированные растворы применяются редко. [c.125]

    По химическим свойствам растворители делят на четыре основные группы амфипротные, протофильные, протогенные и апротонные. В качестве среды для титрования используют в основном первые три группы растворителей, а апротонные растворители применяют как добавки к ним для увеличения шкалы кислотности (см. 8.7) и изменения диэлектрической проницаемости растворителя. [c.197]

    Особый интерес в связи с проблемой единой шкалы кислотности (см. гл. IX) представляют данные об изменении энергии (изобарного потенциала) при переносе протона из неводного растворителя в воду и соответственно данные о коэффициентах активности y о отдельно протона. Для их оценки необходимы данные об изменении изобарного потенциала — химической энергии сольватации протона в различных неводных растворителях и в воде. [c.202]

    При переходе от водного к неводноМу раствору следует считаться с тем, что протяженность шкалы различна для разных растворителей. Для того чтобы оценить абсолютную кислотность, кроме протяженности шкалы нужно знать, как смещено начало шкалы кислотности одного растворителя по отношению к шкале кислотности воды. [c.419]


    Использование Уо протонов в различных растворителях в качестве единой меры изменения кислотности в разных растворителях однозначно характеризует величину смещения шкал кислотности. [c.419]

    Шкале pH для неводных сред можно придать определенный смысл различными методами. Если допустить, что имеют дело с протонным растворителем, то следовало бы построить ячейку с одним этим растворителем, чтобы кислотный характер был обусловлен только сольватированным протоном. Затем необходимо проделать тот же путь подбора стандартных растворов с известными значения.ми pH, как и для определения pH в водной среде. [c.378]

    В связи с широким применением неводных растворителей применение единой шкалы кислотности приобретает большую роль. Кислотно-основные процессы получили распространение в химической промышленности (нейтрализация, гидролиз, травление металлов и т. п.). Регулированием кислотности добиваются увеличения скоростей реакции и изменения их механизма. В этом состоит, например, сущность кислотно-основного катализа. Величина кислотности стала одной из важных характеристик, используемых для автоматического контроля и регулирования большого числа процессов. [c.291]

    Значение потенциалов полунейтрализации при выборе растворителя. Потенциалы полунейтрализации могут служить полезными характеристиками при выборе растворителя для данного конкретного случая титрования. С этой целью при титровании слабых кислот (или слабых оснований) сопоставляют относительную шкалу кислотности Ез (см. ниже) избранного растворителя с потенциалом полунейтрализации определяемого электролита. Основный предел относительной шкалы кислотности растворителя определяет возможность титрования в его среде слабых кислот, так как их потенциалы полунейтрализации по мере ослабления кислых свойств электролитов смещаются в основную область относительной шкалы кислотности. Кислотный предел относительной шкалы кислотности растворителя определяет возможность титрования в его среде слабых оснований, так как их потенциалы полунейтрализации по мере ослабления основных свойств электролитов смещаются в кислую область. [c.410]

    Для титрования смесей слабых оснований с р/Св(Н20) 5 необходимо применять растворители, относительная шкала кислотности которых смещена в кислотную область или имеет одинаково большие кислотный и основный пределы относительной шкалы кислотности. [c.411]

    При титровании смесей, содержащих сильные основания, для которых условия титрования определяются большой величиной основного предела относительной шкалы кислотности, применяют растворители с относительной шкалой кислотности, смещенной в основную область. [c.411]

    Эмпирическая (относительная) шкала кислотности растворителей. Иногда выбор растворителя для данного конкретного случая титрования делается на основе эмпирической (относительной) шкалы кислотности растворителя Д, и потенциалов полунейтрализации электролита 1/, в данном, растворителе. [c.411]

    Относительная шкала кислотности некоторых растворителей [c.411]

    Протяженность и положение эмпирической (относительной) шкалы кислотности может в известной мере служить некоторым практическим критерием выбора в ряде случаев растворителя или смесп растворителей при титровании данных электролитов. [c.413]

    На относительную шкалу кислотности также оказывают заметное влияние посторонние примеси, содержащиеся в исходном растворителе (в том числе и вода), которые в зависимости от их кислотно-основных свойств, положения и протяженности собственных шкал кислотности, отличающихся от щкалы кислотности растворителя среды, люгут оказывать очень сильное влияние, искажающее результаты исследования. Причем для резкого изменения шкалы кислотности исходного растворителя иногда достаточно даже следов посторонних примесей. [c.414]

    Отсюда вытекает очень важный в теоретическом и практическом отношении вывод, что суждение о нивелирующе-дифференцирующем эффекте растворителя или смеси растворителей по относительной шкале кислотности которую используют иногда исследователи неводных растворов, имеет лишь узкопрактическое значение и носит приближенный характер. [c.414]

    Следовательно, абсолютная протяженность шкалы кислотности предопределяется величиной ионного произведения растворителя К  [c.415]

    Из этого следует, что шкала кислотности ограничивается основностью данного растворителя в растворителях (например, пиридин) более основных, чем вода, шкала кислотности сдвигается в основную сто рону, в менее основных растворителях (например, этиленгликоль) в кислую сторону и, наоборот, в растворителях более кислых, чем вода (например, уксусная кислота), шкала кислотности сдвигается в кислотную, а в менее кислых (метилпиридин) в основную сторону. [c.417]

    Абсолютная (единая) шкала кислотности растворителей [c.418]

    АБСОЛЮТНАЯ (ЕДИНАЯ) ШКАЛА КИСЛОТНОСТИ РАСТВОРИТЕЛЕЙ 419  [c.419]


    В амфотерных растворителях в отличие от апротных растворителей не могут существовать любые кислоты и основания. Если они сильнее, чем ион лиония и ион лиата, то превращаются в последние. Поэтому в амфотерных растворителях шкала кислотности и основности ограничена. Различия в силе кислот (а также оснований) нивелируются, так как частично, а то и полностью вместо молекул различных кислот возникают одни и те же ионы лиония. Например, в водных растворах азотной, галоидоводородных, серной и хлорной кислот фактически присутствует только одна кислота — ион гидроксония Нз0 . [c.128]

    Для стандартизации абсолютной (универсальной, единой), термодинамически строго обоснованной для всех растворителей шкалы кислотности рА, строящейся на основе термодинамических констант автопротолиза, Измайлов воспользовался средними коэффициентами активности сильных кислот в среде неводных растворителей. [c.194]

    Оптимальные условия кислотно-основного титрования устанавливаются на основании сопоставления потенциалов полуоттитрованности титруемого компонента и относительной шкалы кислотности растворителя. Возможность титрования слабых кислот определяется протяженностью основного предела шкалы, [c.95]

    Протяженностью относительной шкапы кислотности определяют возможность раздельного титрования в данном растворителе смеси протолитов. Дифференцированное титрование смеси кислот осуществимо при использовании растворителей, обладающих значительной протяженностью кислотного предела шкалы кислотности, а смеси оснований - основного предела. В среде подходящих растворителей можно осуществить раздельное титрование двух и более компонентных систем, состоящих из веществ, кис-лотно-основные свойства которых в водных растворах близки. [c.95]

    Мования изменяется незначительно при переходе от одного растворителя к другому, если используют растворители, не обладающие нивелирующим эффектом в отношении исследуе- мых кислот или оснований. На рис. Д.145 приведены шкалы потенциалов, т. е. относительные шкалы кислотности, измеренные с применением стеклянного и каломельного электродов для 12 различных растворителей. Растворители расположены в порядке возрастания их основности кислые растворители группы 3 (трифторуксусная и уксусная кислоты), инертные растворители группы 1 (хлорбензол, ацетон, ацетонитрил), амфотер-1НЫ8 растворители группы 2 (метанол, шо-яропанол), вода и основные растворители группы 4 (диметилформамид, пиридин, бутиламин и этилендиамин). Шкалы потенциалов кислых рас-твор телей характеризуются небольшой протяженностью и сильно сдвинуты в кислую область , так как применяемые кислоты в этой области лишь слабо нивелированы. Инертные [c.343]

    С помощью водородного показателя оценивают кислотность среды в неводных растворах. При этом необходимо иметь в виду, что каждый растворитель имеет свою шкалу кислотности рЛ" . Из данных табл. 8.2 следует, что ледяной уксусной кислоты равен 14,4 этанола — 19,1 и т. д. Отсюда значение pH (рСНзСООНг ") нейтрального раствора в ледяной уксусной кислоте 7,2, а в этаноле (рСгНг,0Н2+) — 9,55. [c.125]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует ид того, что начало шкалы кислотности РаНр = о не соответствует равенству абсолютных активностей ионов водорода во всех растворителях. Величины р Н нейтральных растворов в разных растворителях не совпадают друг с другом, так как протяженность шкал, зависящая от ионного произведения растворителя, различна. В верхней части рис. 105 в качестве примера приведены шкалы рНр в воде и некоторых неводных средах. В воде шкала pH изменяется от О до 14 нейтральным раствором называется раствор с pH = 7. Если раствор имеет pH = О, это раствор кислоты с активностью ионов №, равной единице если раствор имеет pH = 14, это раствор щелочи с активностью ионов ОН", равной единице, но это не значит, что не может быть растворов в воде с pH меньше нуля и больше 14. [c.409]

    Чем выше протял<енность относительной шкалы растворителя, тем больше возможность дифференцированного титрования смесей кислот (или оснований). При этом предпочтительно титровать слабые кислоты в тех растворителях, положение шкал кислотности которых соответствует большему основному пределу относительной шкалы кислотности, что обеспечивает четкие скачки титрования. Слабые основания предпоч- [c.410]

    Например, для титрования смеси слабых кислот с р/СнлпСНгО) 5 необходимо остановить свой выбор на растворителе, относительная шкала кислотности которого смещена в основную область или имеет одинаково большие основный и кислотный пределы относительной шкалы кислотности. В случае титрования смесей, содержащих сильные кислоты, для которых условия титрования определяются большой величиной кислотного предела относительной шкалы кислотности, пользуются растворителями с относительной шкалой кислотности, смещенной в кислую область. [c.411]

    Относительная шкала кислотности некоторых растворителей ириве-дена в табл. 16 и рис. 142. [c.412]

    На основании этих положений можно сделать выводы о том, что для дифференцированного титрования смеси электролитов в качестве сред следует использовать кетоны, ацетонитрил, нитрометан, нитробензол, диметилформамид, диметилсульфоксид и смеси бензола и хлороформа с кетонами, ацетонитрилом и другими амфипротными н апротонными диполярными растворителями с большой протяженностью шкалы кислотности (высокошкальные). В среде этих растворителей получаются наиболее резкие скачки титрования и дифференцированно титруются многокомпонентные смеси кислот. Добавление углеводородов к спиртам (в особенности с изо-строением) способствует увеличению их дифференцирующего действия. [c.413]

    Они установили, по кислотно-основные свойства растворителя определяются областью значений потенциалов, которая может быть измерена экспериментальным путем в рамках кислотного и основного пределов шкалы растворителя, обусловливаемой кислотностью сольватированного протона НаМ и основностью сольватированного аниона Мсои, [c.413]

    В реальных условиях титрования при определении потенциалов полунейтрализации указанным методом вместе с титрантами в титруемый раствор, как правило, неизбежно вводятся посторонние растворители (обычно уксусная кислота с НСЮ4 и метиловый или этиловый спирт и бензол с К4М0Н, в которых растворены реагенты), осложняющие условия титрования и изменяющие эмпирическую шкалу кислотности избранного растворителя, так как титрование в этом случае ведется не в среде чистого растворителя. В результате сказывается отрицательное влияние примесей на процесс кислотно-основного титрования и данные получаются не точные. [c.414]

    В растворах хлорной кислоты, приготовленных даже на основе растворителя, применяемого для исходной титруемой смеси, всегда содержится вода. В процессе кислотно-основного титрования гидроксилсодержащих оснований, а при титровании гидроокисью тетралкиламмония карбоксильных и фенольных групп в качестве продукта нейтрализации также образуется вода, резко изменяющая основной и кислотный пределы относительной шкалы кислотности высокошкальных растворителей. [c.414]

    На величину относительной шкалы кислотности оказывают сильное влияние различные факторы (концентрация, образование нерастворимых соединений, комплексообразование, типы применяемых электродов и т. п.), в зависимости от которых протяженность и положение относительной шкалы кислотности данного растворителя может сильно меняться. Например, в случае выпадения в осадок в процессе потенциометрического титрования образующейся соли, в момент полунейтрализации Снап Ч= Скьап и pH ф рК, что приводит к неверным результатам. [c.414]

    Таким образом, по величине Кч. можно судить о нивелирующе-дифференцирующем действии растворителя в отношении опре-ю деленных групп электролитов. Константа автопротолиза позволяет оценить величину коэффициента титрования /Ст, а значение р/Сз дает представление о протяженности абсолютной шкалы кислотности растворителя. [c.420]


Смотреть страницы где упоминается термин Растворитель шкалы кислотности: [c.94]    [c.89]    [c.37]    [c.183]    [c.411]    [c.413]   
Аналитическая химия неводных растворов (1982) -- [ c.192 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Тау-шкала

Шкала кислотности



© 2025 chem21.info Реклама на сайте