Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титранты основные

    В методах, основанных на реакциях кислотно-основного взаимодействия, кривые титрования обычно показывают зависимость pH раствора от объема добавленного титранта. Для построения кривой титрования рассчитывают значения рН 1) до точки эквивалентности (т. э.) 2) в т.э. и 3) после т. э. [c.191]

    Широкое применение в практике аналитической химии нашел другой раздел потенциометрии, известный под названием потенциометрического титрования. Оно заключается в регистрации изменения равновесного потенциала электрода в процессе химической реакции между потенциалопределяющим компонентом в растворе и специально введенным реагентом в качестве титранта. Потенциометрический метод титрования по своим возможностям значительно превосходит титри-метрический метод с применением цветных индикаторов и обладает по сравнению с ним следующими основными преимуществами  [c.108]


    ТИТРАНТЫ ОСНОВНОГО ХАРАКТЕРА [c.104]

    Приготовление растворов титрантов для кислотно-основного титрования.. В ацидиметрии в качестве стандартных растворов титрантов применяют в основном растворы соляной и серной кислот. Серную кислоту, как малолетучее соединение, используют, если необходимо длительное кипячение титруемого раствора с избытком кислотьг. Однако при ее применении возможно образование малорастворимых осадков с некоторыми катионами, например сульфатов бария и свинца. [c.155]

    Основным достоинством метода полуавтоматического потенциометрического титрования является исключение стандартизации титранта, т. к. используют метод сравнения со стандартным веществом. Предварительно в отработанном режиме (скорость подачи титранта и скорость перемещения диаграммной ленты) титруют раствор стандартного вещества. Кривая титрования приведена на рис. 2.10. Зная точную навеску вещества, принятого за стандарт (я-г), и, измерив длину диаграммной ленты на кривой титрования стандарта (/ст, мм), по формуле 7 = //ст рассчитывают титр миллиметра (Г [c.118]

    Бюретка лабораторная автоматическая предназначена для объемного дозирования титранта. Основные блоки БЛА следующие блок подачи титранта (БПТ) и блок титрования (БТ). [c.140]

    Скорость передвижения лепты регистрирующего прибора и скорость подачи титранта в анализируемый раствор определяются эмпирически чтобы обеспечить требуемую точность определения, длина диаграммной ленты, на которой записан полный процесс кислотно-основного взаимодействия, должна составлять не менее 50 мм. Нужная скорость подачи титранта устанавливается подбором соответствующего капилляра на отводной трубке дозатора титранта и регулируется стеклянным краном. Перед началом титрования устанавливают скорость подачи титранта, собирая его в специальный сборник. Стабильность скорости [c.136]

    За т.э. (если титрант - сильный электролит) изменение потенциала будет происходить согласно уравнениям (3.3,1) при титровании слабых кислот и (3.3 ) - при титровании оснований. Следовательно, скачок потенциала будет обеспечен различием равн основном на величину [д и [c.66]

    Кислотно—основное титрование в среде протолитического растворителя основано на протекании ряда реакций между раст ворителем, титруемым веществом и титрантом  [c.93]


    Содержание Ре + и Ре + в исследуемых растворах определяют окислительно-восстановительным потенциометрическим титрованием. Оно подобно кислотно-основному потенциометрическому титрованию (см. работу 23). В качестве титранта используют стандартный раствор дихромата калия. [c.105]

    Основные понятия объемного анализа. Любое объемноаналитическое определение вещества сводится к проведению химической реакции смешиванием растворов реагирующих веществ. Один из растворов содержит вещество неизвестной концентрации и представляет собой анализируемый раствор. Второй раствор содержит реагент, концентрация которого известна с большой точностью и называется рабочим раствором или титрантом. [c.79]

    В титриметрии обычно пользуются логарифмическими кривыми. Кривые титрования в кислотно-основном методе выражают зависимость pH титруемого раствора от объема прибавленного в раствор титранта. Кривые имеют различный характер в зависимости от того, какие кислоты или основания титруют. Строить кривы< можно на основании экспериментальных данных, измеряя [c.60]

    В качестве титрантов для определения кислот применяют неорганические и органические основания, ацетаты и алкоголя-ты щелочных металлов, амины и т. д. Наиболее сильными основными титрантами в неводных растворах являются четвертичные аммониевые основания — гидроксиды тетраметил-, тетраэтил- и тетрабутиламмония и их производные. [c.218]

    Первичное стандартное вещество должно в основном удовлетворять требованиям, перечисленным выше в ип. 1, 2 и 3. Соблюдать условие 4 нет необходимости, так как водный раствор первичного стандартного вещества титруют сразу после приготовления. Первичное стандартное вещество не обязательно должно растворяться в воде (например, оксид ртути имеет преимущества при установке титра растворов кислот). В общем идеальное вещество, пригодное в качестве титранта, можно применять также и как первичное стандартное вещество, но первичное стандартное вещество не всегда можно применять для приготовления раствора титранта. [c.117]

    В ходе кондуктометрического титрования происходит замещение конов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, электропроводность которых больше или меньше электропроводности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. После точки эквивалентности титрант уже не расходуется, поэтому обычно получают восходящие прямые, угол подъема которых зависит от электропроводности титранта. Точность индикации точки эквивалентности определяется углом пересечения прямых он должен быть возможно более острым, тогда точность определения достигает 0,3%. Обычная же точность метода до 1%. Наиболее острый угол пересечения прямых получается при кислотно-основном кондуктомет-рическом титровании, так как ионы Н+ и 0Н вносят особенно большой вклад в электропроводность раствора (см. табл. Д.21). Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять многие реакции осаждения и некоторые реакции комплексообразования. В принципе кондуктометрия годится и для индикации точки эквивалентности в окислительно-восстановительном титровании, если оно сопровождается изменением концентрации ионов НзО+. Но все же лучшие результаты дают в зтом случае другие методы индикации. [c.324]

    Если в ходе кислотно-основного титрования измерить значение оптической плотности в зависимости от концентрационного соотношения обеих форм индикатора и затем построить график зависимости Е от объема раствора титранта, то можно получить прямую, пересекающую ось абсцисс в точке эквивалентности. [c.360]

    Многие реакции образования осадков не используют в титриметрии, так как нет адекватных визуальных или инструментальных методов для индикации точки эквивалентности. По сравнению с кислотно-основным титрованием метод визуальной индикации точки эквивалентности при осадительном титровании имеет тот недостаток, что для каждого конкретного случая необходим свой индикатор. Для радиометрического титрования специальный индикатор не нужен — он содержится в титруемом веществе или в титранте. Например, перед титрованием в титруемое вещество можно ввести активный нуклид и фиксировать уменьшение его активности в процессе титрования до точки эквивалентности, как меру уменьшения его концентрации. Можно использовать также обратный метод, в котором применяют радиоактивный титрант — при его избытке в растворе активность резко возрастает. Если радиоактивные нуклиды находятся и в титранте, и в определяемом веществе, то активность раствора в точке эквивалентности минимальна. [c.391]


    В титриметрическом анализе используют реакции различного типа — кислотно-основного взаимодействия, комплексообразования и т. д., удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AgNOa, в перманганатометрических — раствор КМПО4 и т. д.). По способу фиксирования точки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, кондуктометрического, фотометрического и т. д. При классификации по типу основной реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа. [c.188]

    При кислотно-основном потенциометрическом титровании наибольшее применение имеет гальванический элемент, состоящий из стеклянного и хлорсеребряного электродов (см. рис. 10.2). ЭДС такого элемента выражается уравнением (10.15) и однозначно зависит от активности ионов Н+. Кривая титрования в координатах ЭДС — объем титранта показывает ясную картину изменений, происходящих в растворе. Стандартными растворами (титрантами) при кислотно-основном титровании служат сильные кислоты и сильные основания. [c.93]

    Как видно, основной вклад в погрешность анализа вносит погрешность в определении концентрации титранта. [c.184]

    В методе кулонометрического титрования используются установки с постоянной силой тока. Содержание определяемого вещества рассчитывают по количеству электричества, израсходованного на генерацию необходимого для реакции с анализируемым веществом количества титранта. Кулонометрическое титрование в значительной степени сохраняет аналогию с другими титриметрическими методами. Основное различие относится к приготовлению титранта. В обычных титриметрических методах его готовят заранее по точной навеске или стандартизируют по специальным установочным веществам, а в методах кулонометрического титрования титрант генерируется электрохимическим методом. [c.282]

    Наиболее часто потенциометрический способ используется в кислотно-основном титровании. В титруемый раствор опускают стеклянный электрод и электрод сравнения и измеряют значения ЭДС цепи при добавлении кислоты или ш,елочи. По результатам строят график зависимости ЭДС (или линейно связанной с ней величины pH) от количества добавленного титранта. Перегиб на кривой соответствует точке эквивалентности. [c.245]

    Основным достоинством метода полуавтоматического потенциометрического титрования является исключение стандартизации титранта, т. к. используют метод сравнения со стандартным веществом. Предварительно в отработанном режиме (скорость подачи титранта и скорость перемещения диаграммной ленты) титруют раствор стандартного вещества. Кривая титрования приведена на рис. 2.10. Зная точную навеску вещества, принятого за стандарт ( . г), и, измерив длину диаграммной ленты на кривой титрования стандарта (/ст, мм), по формуле Т м = Нст рассчитывают титр миллиметра (Тмм)—условную величину, характеризующую массу стандартного вещества, приходящегося на 1 мм диаграммной ленты при титровании. [c.118]

    Растворы четвертичных аммониевых оснований имеют преимущество перед другими титрантами основного характера. В качестве растворителей применяют ацетон, ацетонитрил, спирты, диоксан, диметилформамид, димётилсульфоксид, тетрагидрофуран и др. Конец титрования чаще всего определяют потенциометрически со стеклянным или хингидронным электродом или визуально с применением индикаторов. [c.85]

    Многие кислотно-основные реакции находят применение в химическом анализе. Н шример, содержание карбоната в образце можно установить его титрованием сильной кислотой, скажем H I. Методика титрования была кратко описана в гл,. 3 (см. разд. 3.11, ч. 1). Как мы уже знаем, для установления конечной точки титрования, или точки эквивалентности (в которой система содержит стехиометрически эквивалентные количества кислоты и основания), могут использоваться кислотно-основные индикаторы. Но какой из множества индикаторов, изменяющих окраску при различных pH, л)"1ше всего подходит для каждого конкретного титрования На этот вопрос можно ответить, рассматривая график изменения pH в процессе титрования. График зависимости pH от объема добавляемого титранта называется кривой титрования. [c.119]

    В качестве титрантов основного характера используют растворы различных аминов, в том числе моно-, ди- и трибутиламина, триэтиламина, трипропиламина, триэтаноламина, циклогексилами-на и других, а также растворы таких органических оснований, как дифенилгуанидин, пиридин, пиперидин, этилпиперидин, диметил-аминофенилпиразолон, морфолин и другие [334, 338, 339, 354, 382, 383, 394, 403, 404]. Для титрования очень слабых кислот используют также литийалюминийгидрид и литийалюминийамид [405, 406]. [c.104]

    Г ри титровании соединений кислого характера в неводных средах в качестве оснований применяют метилаты, этилаты, бутилаты, амилаты щелочных металлов, растворенные в соответствующих спиртах. Более сильными основными титрантами являются амииоэтилат натрия в среде этилендиамина, а также литийалюминийгидрид и лнтийа.тюминийамид в среде тетрагидрофурана. Р-ры пек-рых аминов, в том числе дифенилгуанидина, и-бутиламина, цпклогекспламина и других, также применяют нри титровании неводных р-ров к-т, Титрантами основного характера часто служат спиртовые и эфирные р-ры едких щелочей и уксуснокислые р-ры ацетатов щелочных металлов. Самыми сильными основными титрантами являются гидроокиси четвертичных аммониевых оснований гидроокиси тетраметил-, тетраэтил-, тетрабутилам-моння и нек-рые другие их производные. Р-ры этих титрантов готовят в среде изопропилового спирта или смеси бензола с метиловым спиртом в отношении от 3 1 до 10 1. Стандартизацию растворов оснований в неводных средах производят в основном но х. ч. бензойной и янтарной кислотам. [c.101]

    При рассмотрении индикаторных электродов, применяемых в потенциометрическом методе, по различным типам химической реакции можно заключить, что только в окислительно-восстановительных и кислотно-основных реакциях они являются универсальными. Независимо от природы окислителя или восстановителя в качестве индикаторного электрода в редоксметрии или редоксметрическом титровании может быть использован один и тот же благородный металл (платина или золото), являющийся переносчиком электронов. То же можно сказать об индикаторных электродах в методе рН-метрии или кислотно-основного титрования независимо от природы титруемых кислот или оснований и титрантов химическая реакция связана с изменением концентрации ионов водорода (pH) в растворе поэтому доста- [c.30]

    Индикаторы обладают кислотно-основными свойствами, естесяг-венно, что они реагируют с титрантом или исследуемым раствором, внося определенную ошибку в результаты титрования. По зтой причине концентрация инцикатора в титруемом растворе должна быть не больше, чем это необходимо для наблюдения четкого изменения окраски раствора при постижении конечной точки титрования. Кроме этого нужно иметь в виду, что для одноцветных индикаторов появление окраски буцет зависеть от их концентрации, так как [c.79]

    В настоящее время комплексиметрия является наряцу с кио-лотно-основными, окислительно-восстановительными титримет-рическими метоцами наиболее часто применимой в практике аналитической химии. Это связано с применением в качестве титрантов класса органических реагентов-комплексонов. Титриметрический метоц, основанный на применении этих реагентов в качестве титрантов, получил название комплексонометрии. [c.110]

    Полярографический метод анализа широко используют для индикации точки эквивалентности при титровании. Поскольку регистрируемым аналитическим сигналом при этом является ток, такое титрование называют амперометрическим. Амперометрическое титрование проводят при потенциале, соответствующем предельному диффузионному току деполяризатора — одного из участников химической реакции, и регистрируют изменение тока в ходе титрования. По кривой зависимости ток — объем титранта находят точку эквивалентности. Амперометрическое титрование возможно при использовании химической реакции, отвечающей требованиям титриметрии, в ходе которой в объеме раствора изменяется содержание полярографически активного компонента, а следовательно, в соответствии с уравнением Ильковича (2.11), предельный ток его электрохимического восстановления или окисления. Взаимосвязь между вольтамперными кривыми и кривой зависимости предельного тока от объема полярографически активного титранта представлена на рис. 2.27. Кривая амперометрического титрования (рис. 2.27) состоит из двух линейных участков, пересечение которых соответствует точке эквивалентности. Форма кривой зависит от того, какой из компонентов химической реакции является полярографически активным (по току какого компонента проводится индикация точки эквивалеитност ). На рис. 2.28 изображены основные типы кривых амперометрического титрования, а в табл. 2.1 даны пояснения и примеры титрований. [c.153]

    Кривые титрования в комплексиметрии строят по аналогии с кривыми кислотно-основного титрования в координатах - количество добавленного титранта (ось абсцисс), количество оттитрованного металла, рМв (ось ординат). [c.113]

    Поскольку титрование в данном случае проводят в сильнокислых растворах с постоянной концентрацией кислоты, коэффициенты активности можно сократить или перенести их в константу в и все расчеты проводить со значениями концентрации. После достижения в ходе титрования стандартного потенциала е реЗ+ р 2+ половина исходного количества Ре(П) переходит в окисленное состояние. В данном случае изменение потенциала при добавлении титранта (Де/ДУ) имеет минимальное значение. Такая же картина наблюдается при кислотно-основном титровании. Функциональная зависимость между значением pH и отношением концентрации соли к концентрации кислоты точно такая же, как между разностью потенциалов и отношением концентраций компонентов редокс-системы. Как только половина слабой кислоты будет оттитрована, концентрация слабой кислоты и концентрация ее соли соавниваются. Это означает, что значение pH примерно равно значению рК [c.324]

    Систематическая индикаторная ошибка. При кислотно-основном титровании значению pH в точке эквивалентности, так называемому показателю титрования, не всегда соответствует pH перехода окраски индикатора, выражаемого в виде показателя индикатора р/Снша- При этом возникает систематическая индикаторная ошибка Р. Ее определяют как разность между количеством С (моль/дм 3) титранта, добавляемого до перехода окраски индикатора, и Со титранта, необходимого для достижения точки эквивалентности  [c.149]

    Проводят фотометрическое титрование сильной кислоты раствором сильного основания в воде. Строят иривые поглощения кислотной и основной форм npnMeHsieMoro индикатора, например нейтрального красного. Для обеих фо рм npji выбранном значении А.тах строят градуировочную кривую зависимости поглощения стандартных pa Tsqpoe от концентрации. Определяют соотношение концентраций обеих форм индикатора в ходе титрования по ряду измеренных значений оптической плотности раствора и строят завиоимость этих значений от объема титранта. [c.367]

    В методах кислотно-основного титрования основной является реакция передачи протона от титрантз титруемому веществу или от титруемого вещества титранту. Реакции кислотно-основного [c.189]

    Измерения электрической проюдимости растворов широко применяют в титриметрическом анализе для определения точки эквивалентносги кондуктометрическое титрование). В методах кондуктометрического титрования измеряют электрическую проводимость раствора после добавления небольших определенных порций титранта и находят точку эквивалентности графическим методом с помощью криюй в координатах к-Кт нша- Практически в этом методе могут быть использованы такие химические реакции, в ходе которых происходит резкое изменение (обычно возрастание) электрической проводимости после точки эквивалентности (реакции кислотно-основного взаимодействия, осаждения и т. д.). [c.219]

    По полученным данным строят кривые титрования, находят объем титранта в точке эквивалентности и рассчитывают молярную концентрацию раствора H IO4 в ледяной уксусной кислоте. Проводят холостой опыт для внесения поправки на содержание основных примесей в растворителе. [c.263]


Смотреть страницы где упоминается термин Титранты основные: [c.153]    [c.94]    [c.109]    [c.101]    [c.165]    [c.222]    [c.106]    [c.115]   
Титрование в неводных средах (1971) -- [ c.149 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Титрант



© 2025 chem21.info Реклама на сайте