Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Треонин в синтезе изолейцина

    Все природные а-аминокислоты делятся на незаменимые которые поступают в организм только из внешней среды (ва-лин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), и заменимые, синтез которых происходит в организме. Исходными веществами для биосинтеза [c.51]

Рис. 5.2. Регуляция синтеза лизина, треонина, метионина и изолейцина у Е. oli (А, В, С - регулируемые изоферменты). Рис. 5.2. <a href="/info/33340">Регуляция синтеза</a> лизина, треонина, метионина и изолейцина у Е. oli (А, В, С - регулируемые изоферменты).

    Связующим звеном в обмене белков и углеводов при переходе первых во вторые и особенно вторых в первые служит ПВК. Являясь главным конечным продуктом дихотомического распада углеводов, ПВК служит исходным веществом для биосинтеза аланина, валина и лейцина. При ее карбоксилировании образуется щавелевоуксусная кислота, из которой строится новая группа аминокислот—аспарагиновая кислота, треонин, метионин, изолейцин и лизин. Вступая в цикл трикарбоновых и дикарбоновых кислот, ПВК используется для биосинтеза а-кетоглутаровой кислоты, из которой образуются глутаминовая кислота, пролин и аргинин. Предшественник ПВК—3-фосфоглицериновая кислота—является исходным соединением для синтеза серина, глицина, цистина и цистеина. [c.470]

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]

    Как известно, для синтеза белков и других биохимических реакций организм использует исключительно аминокислоты, а не белки, поступающие с пищей. Некоторые аминокислоты, необходимые для роста и нормального функционирования животных организмов, потребляются готовыми из пиш.н, так как скорость их синтеза отстает от скорости расхода. Такие аминокислоты называются незаменимыми аминокислотами, к ним относятся валив, лейцин, изолейцин, фенилаланин, аргинин, треонин, метионин, лизин, триптофан, гистидин. [c.261]


    Наиболее чувствительный тип регуляции синтеза аминокислот-это аллостерическое ингибирование первой реакции биосинтетического пути конечным продуктом данной последовательности реакций (разд. 9.18 и 13.11). Первая реакция биосинтетического пути обычно необратима и катализируется аллостерическим ферментом. На рис. 22-8 аллостерическая регуляция показана на примере синтеза изолейцина из треонина, о котором мы уже говорили ранее (разд. 9.18). Конечный продукт-изолейцин-действует как отрицательный модулятор первой реакции этого пути. Такого рода аллостерическая, или нековалентная, модуляция синтеза аминокислот обеспечивает у бактерий быстрый ответ на изменение ситуации. [c.660]

    Другим примером механизма регулирования служит синтез изолейцина из треонина в бактериальных клетках (цвети, табл. П). [c.146]

    В реакции образования изолейцина из треонина конечный продукт (изолейцин) действует как отрицательный модулятор синтеза, что позволяет организмам быстро реагировать на внешние условия. [c.122]

    В клетке осуществляется синтез многих белков, для формирования которых требуется определенное соотношение аминокислот, поэтому контролируется не только синтез данной аминокислоты, но и общее координирование синтеза аминокислот в клетке. В бактериальной клетке, особенно молодой, эта координация хорошо изучена на примере Е.соИ для 4 аминокислот, ведущих начало от аспарагиновой кислоты — лизина, треонина, метионина и изолейцина (рис. 5.2). [c.123]

Рис. 2-37. Ингибирование но принципу обратной связи при синтезе аминокислот лизина, метионина, треонина и изолейцина у бактерий. Цветными стрелками показаны участки, в которых происходит ингибирование ферментов продуктами реакций. Отметим что начальную реакцию катализируют три различных фермента (называемые изофермептами), каждый из которых ингибируется своим конечным продуктом. Рис. 2-37. Ингибирование но <a href="/info/188021">принципу обратной связи</a> при <a href="/info/37303">синтезе аминокислот</a> лизина, метионина, треонина и изолейцина у бактерий. Цветными стрелками показаны участки, в <a href="/info/1481749">которых происходит</a> <a href="/info/1900105">ингибирование ферментов продуктами реакций</a>. Отметим что <a href="/info/366682">начальную реакцию</a> катализируют три <a href="/info/1354262">различных фермента</a> (называемые изофермептами), каждый из которых ингибируется своим конечным продуктом.
    При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма), а также их производных. Среди них есть такие, которые не синтезируются или синтезируются в недостаточном количестве самим организмом и вводятся в организм вместе с пищей эти вещества называются незаменимыми аминокислотами. К йим относятся (указаны в порядке уменьшающейся для человека потребности) лейцин, лизин, валик, фенилаланин, метионин, гистидин, триптофан, аргинин, треонин, изолейцин. [c.549]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста было выяснено в опытах на людях и некоторых животных. В этих опытах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты, и, в зависимости от того, тормозился при этом рост или совершался нормально, делали вывод о значении исследуемых аминокислот для роста. Так, было установлено, что жизненно необходимыми (незаменимыми) аминокислотами для роста крыс являются следующие 10 аминокислот валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин (рис. 40 и 41). Незаменимость указанных аминокислот для роста, видимо, связана с тем, что организм неспособен их синтезировать. Они должны быть введены извне вместе с пищей. Скорость синтеза аргинина, который может быть синтезирован в организме, невелика. Поэтому при отсутствии аргинина в пище рост не прекращается, но идет медленнее, чем при наличии аргинина. Отсутствие в пище остальных аминокислот (например, гликокола, аспарагиновой кислоты) не влияет на рост, так как организм способен их синтезировать. [c.308]

    Организм человека ограничен в своих возможностях превращать одну аминокислоту в другую. Превращение происходит в печени с помощью процессов транс-аминирования. Посредством трансаминаз аминогруппы переносятся с одной молекулы на другую. В то же время существуют аминокислоты, синтез которых в организме невозможен, и они должны быть получены с пищей это так называемые незаменимые аминокислоты лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин (для роста детей незаменимой аминокислотой является также гистидин). Только при поступлении таких аминокислот возможно со-.хранить азотистое равновесие. [c.7]

    Впервые существование подобного механизма контроля активности ферментов метаболитами было обнаружено у E. oli при исследовании синтеза изолейцина и ЦТФ. Оказалось, что изолейцин, являющийся конечным продуктом синтеза, избирательно подавляет активность треониндегидратазы, катализирующей первую стадию последовательного процесса превращения треонина в изолейцин, насчитывающего пять ферментативных реакций  [c.155]


    Синтез изолейцина из треонина на первом этапе катализирует фермент треонивдезаминаза, превращающая треонин в а-кетобутират  [c.404]

    Классическим примером аллостерического ингибирования может служить ферментная система Е. соИ, катализирующая синтез L-изолейцина из L-треони-на, включающая пять ферментативных реакций. Ингибирование по типу обратной связи процесса превращения треонина в изолейцин приведено ниже  [c.406]

    В клетках выработались механизмы не только регуляции скорости синтеза отдельных аминокислот, но и координирование их синтеза, поскольку для белкового синтеза аминокислоты нужны в определенных соотношениях. Так, у Е. соН синтез четырех аминокислот, образующихся из аспартата — лизина, метионина, треонина и изолейцина, регулируется на первом этапе перехода аспартата в аспартилфосфат. Регуляторный фермент аспартилкиназа имеет три изофермента, регулируемых независимо друг от друга как по аллостерическому механизму, так и путем изменения скорости их синтеза в клетке. [c.407]

    Треонин-дегидратаза катализирует превращение треонина в а-кетобутират. Последнее соединение конденсируется с активным ацетальдегидом , в результате чего образуется а-ацето-а-оксимасляная кислота — ключевой промежуточный продукт в синтезе изолейцина. Синтез изолей-цина из этого промежуточного продукта протекает очень сходно с синтезом [c.442]

    Мутагенные факторы могут изменить нормальный биосинтез аминокислот в клетке, воздействуя на генетический аппарат. Если в результате облучения или воздействия химических факторов ДНК не дает информацию для синтеза фермента и в клетке не синтезируется, например фермент гомосериндегидроге-наза, катализирующий превращение полуальдегида аспарагиновой кислоты в гомосерин, то клетка может синтезировать необходимые для своего существования белки только в том случае, если в питательной среде уже содержится готовый гомосерин. Так как аспарагиновая кислота является исходным пунктом биосинтеза не только гомосерина, но и треонина, изолейцина, метионина, а также лизина, то отсутствие упомянутого фермента влияет на биосинтез всех этих аминокислот. Прекращение биосинтеза гомосерина одновременно прекращает биосинтез треонина, изолейцина и метионина, поэтому эти аминокислоты также должны содержаться в среде роста данной культуры. В данных условиях весь ход биосинтеза аминокислот в клетке идет в направлении от аспарагиновой кислоты к лизину. [c.158]

    Зависимость выражения треонинового оперона от гена relA была установлена при сопоставлении активности гомосериндегидрогеназы I в Rei - и Rel -клетках при переносе их со среды, содержащей избыток треонина и изолейцина, на среду, не содержащую этих аминокислот (условия дерепрессии). Наличие мутации в гене relA приводит к практически полной потере способности клеток увеличи вать синтез гомосериндегидрогеназы I в этих условиях, тогда как клетки Rel интенсивно образуют этот фермент. [c.183]

    Аналогичный результат наблюдается при устранении мутации ilvA442, вызывающей ауксотрофность по изолейцину. В этом случае значительное (более чем в четыре раза) снижение количества треонина в пуле свободных аминокислот может быть связано как с активным расходом треонина на синтез изолейцина, так и с репрессией треонинового оперона, в осуществлении которой участвует образующийся в клетке изолейцин. [c.185]

    При синтезе изолейцина ключевым промежуточным соединением также является оксобутират, который образуется путем дезаминирования треонина. Здесь наблюдается интересная ситуация, когда промежуточное соединение для синтеза одной аминокислоты образуется из другой аминокислоты, происходящей не из пирувата, а из оксало-ацетата. Регуляция этих путей осуществляется конечным продуктом по принципу обратной связи. [c.34]

    Иной тип регуляции действует в случае многих метаболических последовательностей, ведущих к синтезу небольших молекул, например аминокислот. При этом фермент, катализирующий первый этап биосинтеза, подвергается ингибирующему действию конечного продукта биосинтеза (рис. 6.5). Иллюстрацией этого механизма рстуяя-пт-ингибирования по принципу обратной связи, или ретроингибирования,-мож т служит биосинтез изолейцина у бактерий. Превращение треонина в изолейцин осуществляется в пять этапов, первый из которых катализируется треониндезаминазой. Когда концентрация изолейцина достигает достаточно высокого уровня, происходит ингибирование фермента, обусловленное тем, что изолейцин присоединяется к регуляторному (а не к каталитическому) участку фермента. Ингибирование фермента в этом случае опосредовано обратимым аллостерическим взаимодействием. При снижении содержания изолейцина до определенного уровня треониндезаминаза вновь становится активной и синтез изолейцина восстанавливается. [c.106]

    В связи с важной регуляторной функцией треонина в обмене веществ му-тантньгх продуцентов лизина концентрации треонина в среде придается чрезвычайно большое значение. Экспериментально устаноалено, что наиболее приемлемой концентрацией L-треонина для различных мутантов является 0,2-0,8 мг/мл. Есть данные о возможной замене до 50% треонина на L-изолейцин, но эта замена для каждого мутанта должна экспериментально обосновываться, так как сравнительно часто это приводит к снижению синтеза (до 30%) лизина. [c.29]

    Применение. Наибольший практич. интерес представляют алифатич. аминокарбоновые к-ты, являюищеся основой синтетич. и природных полиамидов (белков, полипептидов). а-А. используют для получения синтетич. полипептидов. L-a-A., и в особенности те, к-рые не синтезируются в организме человека и наз. незаменимыми А. (валин, лейцин, изолейцин, фенилаланин, треонин, метионин, лизин, триптофан), широко применяют в медицинской практике. (о-А. и их лактамы служат для промышленного синтеза полиамидов, Ароматич. А. используют в синтезе красителей и лекарственных препаратов. На основе аминокарбоновых и аминофосфоновых к-т синтезируют селективные комплексообразуюпще ионообменники. [c.52]

    Для осуществления белкового синтеза, так же как и для других синтетических процессов, о которых мы говорили выше, необходима энергия в форме АТФ. Цикл лимонной кислоты поставляет эту энергию. Кроме того, синтез белка требует запаса мономерных единиц (или их предшественников) — приблизительно двадцати видов природных аминокислот. Большинство В1дсших животных, включая человека и крысу, синтезируют в достаточном количестве лишь около половины этих аминокислот остальные аминокислоты — аргинин, гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин — не могут быть синтезированы в самом организме они должны поступать с пищей и потому называются незаменимыми. Растения и большинство микроорганизмов, напротив, способны синтезировать все или почти все аминокислоты. Незаменимые аминокислоты помечены на фиг. 102 звездочкой. Предшественники для синтеза соединений обеих групп — заменимых аминокислот у животных и большей части аминокислот у других организмов — опять-таки поставляются циклом лимонной кислоты. [c.364]

    Одновременно со снижением содержания азота при повышенных концентрациях НАМ наблюдается изменение аминокислотного состава белка. Количественное содержание лизина, гистидина, аланина, валина, метионина, изолейцина, тирозина и феналалани-на не изменялось под влиянием химических мутагенов. Содержание аспарагиновой и глутаминовой кислот достоверно снижалось во все годы исследований (таблица). Поскольку аспарагиновая и глутаминовая кислоты являются предшественниками других аминокислот, то снижение их содержания существенно сказывалось на синтезе белка. Содержание треонина, серина, пролина [c.84]


Смотреть страницы где упоминается термин Треонин в синтезе изолейцина: [c.115]    [c.171]    [c.660]    [c.61]    [c.23]    [c.28]    [c.181]    [c.188]    [c.61]    [c.106]    [c.31]    [c.243]    [c.11]    [c.408]    [c.79]    [c.15]    [c.235]    [c.15]    [c.98]    [c.151]    [c.461]    [c.68]    [c.40]   
Биохимия аминокислот (1961) -- [ c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Изолейцин

Треонин

Треонин синтез



© 2025 chem21.info Реклама на сайте