Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

аланин биосинтез

    Хотя H N высоко токсичен для большинства организмов, многие высшие растения могут использовать H N в процессах биосинтеза. Предложите пути превращения серина и H N в аспарагин и а. ди-аминомасляную кислоту. Предложите путь синтеза в грибах аланина из ацетальдегида, H N и аммиака. (Примечание соответствующей неферментативной реакцией является хорошо известный синтез аминокислот путем реакции Штрекера.) [c.176]


    БИОСИНТЕЗ АЛАНИНА, АСПАРТАТА И АСПАРАГИНА [c.119]

    Прямое аминирование кетокислот аммиаком — первая и наиболее важная реакция биосинтеза аминокислот. На особую важность этой реакции в свое время указывали Д. Н. Прянишников и С. П. Костычев. Позднее в ряде исследований В. Л. Кретовича была показана возможность такого биосинтеза аминокислот у многих растений, и был выделен ферментный препарат, катализирующий синтез аланина из аммиака и пировиноградной кислоты. Ниже приводятся схемы реакций прямого аминирования кетокислот аммиаком  [c.241]

    Однако, когда аланин синтезируется в живом организме, реакция происходит на поверхности асимметрического катализатора , называемого ферментом. Если сам фермент всегда присоединяется к имину с фронта, атака ионом цианида может осуществляться только с тыла. При этом будет образовываться лишь один из двух антиподов аланина. Такая модель стереоспецифичного действие ферментов отвечает наблюдаемому в процессе биосинтеза образованию одного только вида энантиомеров. [c.21]

    Количество данных, касающихся биосинтеза аминокислот, очень велико, но о ранних стадиях биосинтеза известно меньше, чем о более поздних. Современные представления о механизмах превращения газообразного азота в аммиак у растений изложены в специальной монографии [1]. Миллер [2] сделал очень интересную попытку подойти к решению проблемы первичного образования органических веществ на земле он показал образование аминокислот (глицин, саркозин, ОЬ-аланин, р-аланин, ОЬ-а-аминомасляная кислота и а-аминоизомасляная кислота), а также других соединений (молочная, муравьиная и уксусная кислоты) в системе, содержащей метан, аммиак, водород и воду. Эту смесь, близкую к предполагаемому составу земной атмосферы на ранних стадиях ее образования, подвергали в течение недели и дольше воздействию электрических разрядов. Было найдено, что аминокислоты образуются путем гидролиза нитрилов последние в свою очередь возникают в результате реакции между альдегидами и синильной кислотой, образующимися под действием электрических разрядов. Миллер высказал любопытное предположение о возможном синтезе первых живых организмов из аминокислот и других соединений, образовавшихся в результате взаимодействия между альдегидами, синильной кислотой и аммиаком в первичном океане. [c.307]

    Пути биосинтеза конкретных аминокислот различаются деталями схемы и природой исходной окси- или оксокислоты. По этому последнему фактору аминокислоты подразделяются на аминокислоты, происходящие из пировиноградной кислоты — лейцин, изолейцин, валин, лизин, аланин аминокислоты, происходящие из щавелевоуксусной кислоты — аспарагиновая кислота, аспарагин, треонин, метионин аминокислоты, происходящие из 2-оксоглу-таровой кислоты —аргинин, пролин, глутаминовая кислота, глутамин аминокислоты, происходящие из продуктов [c.80]


    На рис. 7-1 показано еще несколько биосинтетических путей. Например, пируват легко превращается в аминокислоту аланин, а щавелевоуксусная кислота — в аспарагиновую кислоту последняя в свою очередь может превращаться в пиримидины. Другие аминокислоты, пурины и прочие соединения, необходимые для построения клеток, образуются в л1етаболических путях, большая часть которых берет начало от некоторых соединений, показанных на рис. 7-1, или в какой-либо точке на одном из путей, показанных на этом рисунке. Фактически биосинтез всегда зависит от наличия энергии, высвобождающейся при расщеплении АТР. Во многих случаях требуется также один из переносчиков водорода в восстановленной форме. [c.87]

    Логически представляется наиболее вероятным, что следующим промежуточным соединением в биосинтезе кониина после альдегида (61) является продукт трансаминирования (62), находящийся в равновесии с -коницеином (64) (также обнаруженным в болиголове). Веское свидетельство в пользу такого предположения [а также в пользу участия соединения (61)] получено после выделения из болиголова двух ферментов, один из которых катализирует превращение альдегида (61) в -коницеин (63) в присутствии аланина [59], а другой — превращение (63) в кониин (64) [60]. Более того, эксперименты с мечеными соединениями показывают, что реакция превращения коницеина (63) в коннин (64) легко обратима [58, 61]. Наконец, с помощью СОг была подтверждена последовательность превращений (63)->(64)- Л -метил-кониин [62]. [c.554]

    Исключением является также биосинтез мимозина (114) для него имеются данные о возможности его происхождения из лизина [116] (боковая цепь, по-видимому, формггруется из аланина). Рицинин (115), очевидно, образуется из никотиновой кислоты (34) (и ее предшественников — глицерина и аспарагиновой кислоты), а также из промежуточных соединений метаболического цикла пиридиновых нуклеотидов [117]. Подтверждением связи биосинтеза рицинина с этим циклом служит факт снижения эффективности включения [6- С] хинолиновой кислоты (41) в алкалоид под влиянием ингибиторов ЫАО-синтетазы [118]. [c.568]

    Белки синтезируются на рибосомах из отдельных аминокислот, образуемых самими микроорганизмами. Исключение составляют некоторые ауксотрофные мутанты, для которых необходимо присутствие в среде определенных аминокислот. Биосинтез аминокислот в клетке идет ферментативно из неорганического азота и различных соединений углерода, например продуктов аэробного или анаэробного разложения углеводов. Многие аминокислоты образуются из промежуточных продуктов цикла Кребса из а-кетоглутаровой кислоты — глутаминовая кислота, орнитин, аргинин, пролин из щавелевоуксусной кислоты — Ь-ас-парагиновая кислота, гомосерин, метионин, треонин, диаминопимелиновая кислота, лизин, изолейцин из пировиноградной кислоты — аланин, валин, лейцин, серии, глицин, цистеин (рис. 17). [c.41]

    Алифатические аминокислоты синтезируются из продуктов биохимического расщепления углеводов — триоз (глицин, серин), пировиноградной кислоты (аланин, валин) или а-кетоглутаровой кислоты (глутаминовая кислота). В биосинтезе ароматических аминокислот участвует шикимовая кислота. Наконец, при биосинтезе аминокислот, содержащих гетероциклическое ядро, два углеродных атома ядра возникают из С, и Са атомов 5-фосфорибозилпнрофосфата (см. стр. 394). [c.403]

    Белии — важнейшие компоненты живого вешества, входящие в состав клеточной ткани и участвующие в процессах биосинтеза. Белки — это сложные полимеры, построенные индивидуальными аминокислотами. Простые белки — протеины — состоят только из аминокислот сложные белки — протеиды — помимо аминокислот содержат другие структурные элементы. Большинство белков состоят из 20 аминокислот (аланин, глицин, лейцин и др.). Все [c.100]

    Больщинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. В качестве исходных углеродных скелетов для биосинтеза аминокислот служит небольшое число промежуточных соединений различных метаболических путей (табл. 10). Введение в молекулу некоторых из них (щавелевоуксусной, а-кетоглутаровой, пировинофадной кислот) аминного азота приводит к образованию аспарагиновой, глутаминовой кислот и аланина. Однако в больщинстве случаев исходные соединения должны подвергнуться значительным перестройкам, чтобы сформировать углеродный остов молекулы будущей аминокислоты. [c.88]

    Изучая образование простейших продуктов аммонолиза колхицина и колхамина, ш убедились в значительной легкости протекания замещения лабильного метоксила на аминогруппу. Нам казалось вероятным, что реакция подобного типа могла бы протекать и в живом организме. В этом случае возможным реагентом с аминогруппой могли бы быть аминокислоты Ч С другой стороны, когда намечалась эта работа были уже известны исследования относительно сар-колизина. Как известно, при синтезе этого высокоэффективного противоопухолевого соединения основной замысел заключался сочетании в одном соединении фрагмента метаболита и мощной цитотоксиче-ской группировки, что послужило бы для транспортирования последней в то место, где идет биосинтез В обзоре литературы, раздел 1.1,2., подробно рассмотрены условия взаимодействия аминов с соединениями колхицинового ряда. При осуществлении реакции колхицина с гликоколом или у -аланином потребовались несколько иные условия, чтобы колхицин вступил в реакцию необходим 10-1фат-ный избыток аминокислоты Кроме того, оказалось обязательным присутствие щелочи не менее чем в эквивалентном аминокислоте количестве, При отсутствии щелочи реакция не идет и колхицин почти полностью возвращается обратно (см. в экспериментальной части, таблица 3,У, опыты 5 и 9 таблица 3,У1, опыты 8 и 9 таблица З.УП, опыты 5,13,14 3,Х, опыт 1 3,УШ, опыты 5, 6). [c.174]


    Продукты катаболизма пиримидинов либо выводятся из организма, либо повторно утилизируются в других метаболических процессах. Так, р-аланин используется при биосинтезе витамина В3 (пантотеновая кислота), который, в свою очередь, необходим для синтеза коэнзима А и ацилпереносящего белка — компонента, участвующего в синтезе жирных кислот. [c.428]

    При распаде пиримидиновых оснований возникает -аланин - аминокислота, используемая для биосинтеза коэнзима А, необходимого для синтеза и деструкции высших жирных кислот. Несомненно, что (3-окисление служит источником для поддержания на достаточном уровне синтеза нуклеозидтрифосфатов, если указанное окисление сопряжено с фосфорилированием и новообразованием АТФ. [c.459]

    Помимо пенициллинов, к числу ингибиторов биосинтеза бактериальной клеточной стенки относятся близкие им цефалоспорины, например цефалоспорин С (234), продуцируемый плесенями из рода Emeri ellopsis ( ephalosporium), и такой простой антибиотик, как о-циклосерин (235), выделяемый из некоторых видов Sireptomy es и обладающий высокой активностью на грамположительных и грамотрицательных бактериях, трипаносомах и риккетсиях. В образующем бактериальные клеточные оболочки мукопептиде содержится значительное количество остатков D-аналина с неприродной конфигурацией, что увеличивает устойчивость этих оболочек к действию протеолитических ферментов. D-Циклосерин является структурным аналогом D-аланина и его антагонистом и поэтому подавляет соответствующие ферменты в системе биосинтеза мукопептида. Наряду с этим циклосерин ингибирует действие многих ферментов, содержащих в своем составе остаток пиридоксаля, с которым он образует основание Шиффа особенно важным является подавление трансаминаз [79]. [c.192]

    Карбамилфосфат в растениях, как и в животном организме, вовлекается в биосинтез аргинина и пиримидинов. В тканях растений и микроорганизмах, подобно животным тканям, широко распространены ферменты, называемые ами-яотрансферазами или трансаминазами, осуществляющие переаминирование, т. е. перенос аминогруппы от глютамата и аланина на другие а-кетокислоты, или наоборот.. (см. стр. 191). [c.282]

    В организме человека и белой крысы синтезируются 10 или 20 аминокислот, входящих в состав белков. Остальные аминокислоты, которые должны поступать с пищей и потому называются незаменимыми, синтезируются растениями и бактериями. Аминокислоты, объединяемые под названием заменимых , образуются различными путями. Глутамат получается в результате восстановительного аминирования а-кетоглутарата. Сам глутамат служит предшественником глутамина и пролина. Аланин и аспарат образуются путем трансаминирования соответственно из пирувата и оксалоацетата. Тирозин получается в результате гидроксилирования фенилаланина, принадлежащего к числу незаменимых аминокислот. Цистеин синтезируется из метионина и серина в сложной последовательности реакций, в которой промежуточными продуктами служат S-аденозил-метионин и цистатионин. Углеродный скелет серина происходит от 3-фосфоглицерата. Серин является предшественником глицина Р-углеродный атом серина переносится на тетрагидрофолат. Пути биосинтеза незаменимых аминокислот у растений и у бактерий более сложны и длинны. Они образуются из некоторых заменимых аминокислот, а также из других метаболитов. Аллостерическая регуляция биосинтетических путей, приводя- [c.678]

    Еще сравнительно недавно считали, что биосинтез аминокислот может происходить только в надземных зеленых частях растений. Однако последующие исследования показали, что новообразование аминокислот может происходить не только в надземных, но и в подземных органах растений — корнях, клуб нях, корнеплодах. Например, в опытах с кукурузой уже через 1 час после подкормки растений аммиачным азотом в корнях синтезировались аланин и у-аминомасляпая кислота, через 4 часа — глутамин и глицин, а через 9—24 часа после внесения азота в корнях накапливались все аминокислоты, характерные для кукурузы. В листьях растений биосинтез аминокислот происходит с еще большей скоростью, чем в корнях. [c.240]

    Возможно существование и другого пути биосинтеза пиримидинов, проходящего через карбомоил- -аланин, соответствующие рибонуклеозид и рибонуклеотид и затем дигидроуридин-5 -фосфат [59] в этом случае оротовая кислота не принимает участия в образовании пиримидинового кольца. [c.179]

    Обратимое превращение аспарагиновой кислоты в щавелевоуксусную было рассмотрено в гл. И1. Процессу окисления углеродного остова аспарагиновой кислоты, наблюдаемому в опытах с тканевыми препаратами крысы [10], вероятно, предшествует переаминирование. Аспарагиновая кислота декарбоксилируется различными специфическими декарбоксилазами с образованием либо а-аланина, либо р-аланина (стр. 208). Были рассмотрены также роль аспарагиновой кислоты в образовании аргининоянтарной кислоты в процессе синтеза мочевины (стр. 339) и использование а-аминогруппы аспарагиновой кислоты в биосинтезе пуринов (стр. 283, и [11]). L- и D-изомеры аспарагиновой кислоты не дезаминируются со сколько-нибудь заметной ско-)остью под действием общих аминокислотных оксидаз. Однако -аспарагин оки-сляется оксидазой змеиных ядов, а относительно специфичные оксидазы, найденные в почках животных различных видов, катализируют окисление D-аспарагиновой кислоты (стр. 187). Биосинтез аспарагина был рассмотрен в гл. Ill этот вопрос нуждается в дальнейшем изучении [12]. В организме животных, по-видимому, возможен синтез аспарагина. Имеются [c.311]


Смотреть страницы где упоминается термин аланин биосинтез: [c.143]    [c.164]    [c.444]    [c.215]    [c.224]    [c.612]    [c.619]    [c.641]    [c.139]    [c.583]    [c.612]    [c.372]    [c.390]    [c.391]    [c.376]    [c.728]    [c.21]    [c.182]    [c.255]    [c.56]    [c.204]    [c.530]    [c.69]    [c.235]    [c.241]    [c.282]    [c.353]   
Биохимия Том 3 (1980) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин



© 2025 chem21.info Реклама на сайте