Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

КЭП на основе меди

    Алюминий —одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, циика, железа. [c.637]

    Медь и многие сплавы на ее основе стойки только в чистой кислоте при нормальной температуре, но их скорость коррозии может увеличиться в десятки раз при аэрировании нли загрязнении раствора окислителями и повышении температуры, Из сплавов на основе меди несколько лучшей коррозионной стойкостью обладают оловянистые бронзы. Скорость коррозии молибдена, вольфрама, ниобия в растворах кислоты невелика, возможно охрупчивание ниобия а концентрированной кислоте ири высокой температуре. [c.851]


    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]

    Сплавы на основе меди. Ингибированная морская латунь с содержанием приблизительно 70 Си — 30 2п с небольшими добавками мышьяка или сурьмы является в США стандартным материалом для конденсаторов, охлаждаемых морской или соленой водой, с трубными досками, изготовляемыми из прокатанной морской латуни (60 Си — 40 2п). В Великобритании и в европейских странах чаще используется латунь вследствие ее лучшего противодействия влиянию скорости потока. Латунь обладает коррозионной стойкостью в отношении конденсатов, содержащих СО2, в вакуумных конденсаторах паровых турбин и, как было показано выше, конденсатов с содержанием Н.23. Однако она подвержена воздействию растворов аммиака, и в случаях, когда конденсат или охлаждающая вода содержат аммиак, латунь обычно не используют. [c.316]

    Другим материалом на основе меди, который находит широкое применение для изготовления труб теплообменников, является мельхиор. Типичными составами являются 90 Си — 10 N1, 80 Си — 20 N1 70 Си — 30 N1, причем все они могут содержат небольшие добавки железа для увеличения стойкости к воздействию эрозии и коррозии. Состав 70 Си — 30 N1 обладает коррозионной стойкостью к морской воде почти при всех обстоятельствах, но может загрязняться ею. Этот сплав используется также в парциаль- [c.316]

    Хорошие результаты при 175 °С показал катализатор на основе меди уже после одной ступени конверсии СО в СОг и Нг и отмывки СОг раствором этаноламина полученный водород содержит только следы СО и СОа [51]. [c.27]

    Промышленная атмосфера может вызывать КРН сплавов на основе меди, главным образом благодаря присутствию оксидов азота (см. разд. 19.2). В отличие от чистой меди, медные сплавы, содержащие >20 % Zn, разрушались при выдержке до 8 лет [22]. [c.177]

    Существуют разные конструкции паровых котлов, но по существу все они представляют собой емкости из малоуглеродистой или низколегированной стали, обогреваемые горячими газами. Из котла пар может поступать в перегреватель, изготовленный из более легированной стали, и нагреваться до еще более высокой температуры. Для обеспечения максимальной теплопередачи котловые трубы обычно объединяют в пучок, а греющие газы подают в межтрубное пространство или, реже, в трубы. Пар после совершения работы или другого использования попадает в трубчатый конденсатор, обычно из сплавов на основе меди. Охлаждающая вода может быть как пресная, так и загрязненная, солоноватая применяют также морскую воду. Сконденсированный пар затем возвращается в котел, и цикл повторяется. [c.282]


    Химический состав Адсорбент на основе меди Адсорбент на основе меди Ni 55 % масс, (типичное значение) [c.4]

    Сплавы на основе меди относятся к сложным многокомпонентным объектам. Эти сплавы содержат большое количество элементов, интервал содержания которых достаточно широк (п-10 — 40%). [c.39]

    Этот процесс в присутствии катализаторов (на основе меди или серебра) протекает с высокой скоростью и образованием целевых продуктов. [c.593]

    К электротехническим сплавам с повышенным электрическим сопротивлением и рабочей температурой не выше 500 °С относятся сплавы на основе меди константан (40% Ni, 1,5% Мп) и манганин (3% N1, 12% Мп), обладающие низким температурным коэффициентом электросопротивления и служащие для изготовления магазинов сопротивления и другой электроизмерительной аппаратуры, а также капель (43% N1, 0,5% Мп), применяемый для изготовления термопар. На основе железа и никеля после легирования хромом получают сплавы хромаль (Ре—Сг—А1—N1) и нихром (N1—Сг—Ре), которые применяются при температурах до 1200 °С. Широко применяются для изготовления элементов электронагревательных устройств сплавы типа нихрома, простейший из которых содержит 80% никеля и 20% хрома. [c.637]

    БЕРИЛЛИЯ СПЛАВЫ — наиболее распространены Б. с. на основе меди, содержащие 2—2,5% Ве и известные под названием бериллиевые бронзы. Они отличаются большой прочностью, упругостью, электро- и теплопроводностью, а также высокими антифрикционными свойствами. Б. с. имеют большое значение в технике. [c.43]

    КОНСТАНТАН — сплав на основе меди, содержит N1 39—41% и Мп 1—2%, с высокой термоэлектродвижущей силой в термопарах, малым коэффициентом расширения, постоянным электросопротивлением. К. применяется в электротехнике в виде лент и проволоки для изготовления реостатов, термопар, нагревательных и измерительных приборов. [c.134]

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]

    Все три элемента применяются главным образом в виде металлов (преимущественно в сплавах). Сплавы меди с цинком называются латунью. Все остальные сплавы на основе меди называют бронзами (кроме сплавов с высоким содержанием никеля). Некоторые свойства чистых металлов приведены в табл. 7. [c.52]

    Основным потребителем хрома, молибдена и вольфрама является металлургия, где эти металлы используются при выработке специальных сталей. Как легирующий металл хром применяют для создания аустенитных нержавеющих и жаропрочных сталей и сплавов на основе меди, никеля и кобальта. Хромистые низколегированные стали (до 1,5% Сг) представляют собой материалы повышенной прочности. Инструментальные стали содержат больше хрома (до 12%), что придает им твердость и износостойкость. Содержание хрома свыше 12% обеспечивает высокую коррозионную стойкость сталей. Нержавеющие стали содержат часто кроме хрома и молибден, который увеличивает жаропрочность сталей и улучшает свариваемость. Большие количества хрома расходуются в процессах хромирования главным образом стальных изделий. Антикоррозионные и декоративные покрытия получают при нанесении хрома на подслой из никеля и меди. [c.290]

    Сплавы на основе меди. Бронза — под этим названием выпускаются сплавы, в состав которых входят медь (до 90%), олово (до 10%), свинец (до 1%). При сравнительно низкой температуре плавления (900—1300 ) бронзы обладают ценными механическими свойствами. [c.321]

    В наибольших количествах, как легирующий металл, хром расходуют для создания аустенитных нержавеющих и жаропрочных сталей и сплавов на основе меди, никеля и кобальта. [c.112]

    В последние годы в большом количестве применяют железные порошки для изготовления металлокерамических изделий (подшипники скольжения и т. д.). Железо входит как легирующий компонент в-сплавы на основе меди, алюминия и т. д. [c.140]

    Применение. Важнейшая область применения алюминия— производство легких сплавов на его основе. Алюминий широко используют в качестве легирующих добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа. В виде чистого металла алюминий используют для изготовления химической аппаратуры, электрических проводов. Алюминиевая фольга используется для изготовления конденсаторов. [c.282]

    На основе меди изготовляют различные сплавы бронзы — с содержанием цинка менее 4% латуни — с содержанием цинка более 4%. Легирующие элементы упрочняют медь, резко снижают ее тепло- и электрическую проводимость. Наименьшее влияние на эти свойства оказывает хром — хромистые бронзы БрХ-0,8. [c.385]


    Чистая медь — мягкий металл розового цвета. Хорошие теплопроводность и электрическая проводимость, устойчивость к коррозии, ковкость обусловливают широкое применение меди в технике. На основе меди изготовляются сплавы, % (мае.) бронза (80 Си, 15 5п и 5 2п), латунь (60—90 Си и 10—40 2п), мельхиор (80 Си, 20 N1), нейзильбер (65 Си, 20 2п, 15 N1). Сплавы меди с легирующими металлами применяют в авиа-, авто-и судостроении. Чистую медь применяют в электротехнике. [c.436]

    Амальгама таллия (8,35%) обладает самой низкой из всех двойных металлических сплавов температурой затвердевания (—59°), которую можно еще понизить, добавляя индий. Такая амальгама применяется в низкотемпературных термометрах и других приборах, где требуется жидкий металл при низкой температуре [185]. Предложен ряд сплавов, содержащих таллий (например, подшипниковые на основе меди или серебра), но широкого распространения они до сих пор не получили. [c.338]

    Жаропрочные магнитные сплавы с редкоземельными металлами применяются для отливки дета лей сверхзвуковых реактивных самолетов, управляемых снарядов и оболочек искусственных спутников Земли [71. Имеются сведения [31 о промышленном использовании сплава 95% мишметалла и 5% магния для отливки заготовок деталей с высокими механическими характеристиками. В производстве легких авиационных магниевых сплавов используется неодим [8]. 0,5—6% Рг, 0(1 или Ей повышает стойкость хромовых сплавов к окислению [9]. Сплавы 5т-Со устойчивы против размагничивания и используются в аэрокосмическом оборудовании. Разработан состав сплавов РЗЭ с кобальтом для постоянных магнитов [3]. РЗЭ вводят в припои на основе меди для улучшения структуры припоев. [c.87]

    Используемые в технике сплавы содержат больше двух компонентов. В состав большинства марок стали входят наряду с железом и углеродом так называемые легирующие элементы — Мп, Сг, N1, 5 и др. Несколько элементов обычно входит в состав сплавов на основе меди, олова, алюминия и многих других цветных металлов. Для описания фазовых равновесий в реальных сплавах во многих случаях достаточно знания диаграмм состояния для систем, состоящих из трех основных компонентов, например, для нержавеющих сталей из железа, хрома и никеля. [c.180]

    Литий применяется для производства сплавов на основе меди, магния и алюминия (придает сплавам легкость), в металлургии для удаления из металлов примесей кислорода, водорода, азота, серы, с которыми литий образует соединения, переходящие в шлак. Литий используется в атомной технике для получения трития, который образуется при облучении металла нейтронами  [c.244]

    Конверсию СО проводят при избытке пара и в присутствии катализаторов. Катализаторы, применяемые в промышленности для конверсии окиси углерода, в зависимости от рабочей температуры условно разделяют на среднетемпературные (в пределах 350—550 С) и низкотемпературные (175—300°С). Основным компонентом среднете.мпературного железохромового катализатора 482 является окись железа, а низкотемпературных катализаторов— медь и ее соединения, окислы цинка, хрома, алюминия, магния и др. Активность катализатора воостапавливают газовой смесью, содержащей водород и окись углерода. Низкотемпературный катализатор на основе меди более чувствителен к отравлению сернистыми соединениями. Поэтому при работе с низкотемпературным катализатором газ, пар и конденсат должны быть более чистыми. [c.35]

    В состав бронзы ВБ24 входят медь (основа), свинец, сурьма, фосфор в состав дюралюминия Д1Т — алюминий (основа), медь, магний, марганец и в очень небольших количествах железо, никель, цинк, кремний, титан в состав стали 12ХНЗА — железо (основа), никель, хром, марганец, кремний, углерод. [c.163]

    Толщина слоев внутреннего и внешнего Не окисления некоторых сплавов на основе меди и серебра (по Райнсу, Джонсону и Андерсону) [c.109]

    Железо используется в качестве легирующего компонента в сплавах на основе меди, алюминия и других металлов. В последнее время в больнюм количестве применяются железные порошки для нзготов.чеиия металлокерамических изделий — иодшнпинкиь скольжения и т. п. [c.310]

    Используются различные катализаторы на основе меди (медь на кизельгуре, медь на диатомите, медно-хромовый). Температура гидрирования — 150—160 °С, объемная скорость подачи сырья — 0,2—0,25 ч"1, мольное соотношение водород/сырье = (10ч-25) 1. Регулирование соотношения водород/сырье достигается подачей водорода через обогреваемый сборник, в котором находится 2-этилгексеналь. Изменением температуры от 60 до 80 °С добиваются требуемого испарения сырья, и в реактор поступает гомогенная смесь альдегида и водорода. Степень превращения достигает 98—99% (из них 97% приходится на 2-этилгексанол). Основным побочным продуктом является 2-этилгексенол, в гидрогенизате присутствует также не вступивший в реакции альдегид и 2-этилгексаналь. [c.40]

    Химический состав ZnO >86% масс. (Типичн. 91%) Связующий состав Остальное Адсорбент на основе меди Адсорбент на основе меди [c.5]

    Основа — медь и ее сплавы. Кадион И растворяют в воде из расчета 2 г на 100 см раствора (раствор I). Персульфат аммония и аммиак (плотность 0,91 г/см ) растворяют в воде нз расчета 10 г (первого) и 10 см- (второго) на 100 см раствора (раствор 2). Растворы 1 и 2 смешивают в отношении объемов 1 1 и добавляют пропиловый спирт в отиошеинн 4 1. Диоксид титана замешивают на полученной смеси из расчета 12—15 г на [c.275]

    Назовите распространенные сплаиы на основе меди, укажите их элементный состав. Какими химическими методами можно перевести в раствор эти сплавы Предложите способы обнаружения всех элементов в полученных растворах, а также способы их разделения. [c.120]

    Бронзовый век начался 6 тыс. лет тому назад и его протяженность во времени составляет 3 тыс. лет. Бронзовый век характерен тем, что оружие, домашняя утварь, предметы искусства изготовлялись из металла, главным образом пз бронзы. Выбор бронзы определялся условиями выплавления этого сплава пз руды так как сплавы на основе меди п олова, как правило, нпзкоплавки, они могут быть получены прокаливанием соответствующих руд с углем при температуре горения дерева. Еслп в кострах древних людей случайно среди камней попадались минералы меди, олова, цинка и др., под действием раскаленного угля происходило восстановление руды до металла. При этом образовывалась быстро застывающая при охлажденпи капля. Разогретый металл легко ковался, пз него можно было приготовить изделия различной формы и назначения. [c.251]

    Олово используют для покрытия (лужения) железа, при этом получается белая жесть, на изготовление ко орой расходуется около половины производимого, олова. Из белой жести делают консервные банки. Оловянная фольга (станиоль) применяется в производстве электроконденсаторов. Оловянные сплавы не обладают высокой прочностью, и их употребляют как антифрикционные материалы и припои. К "первым относятся оловянные баббиты (сплавы на основе свинца), ко вторым — свинцово-оловянные припои (третник), хорошо смачивающие поверхности большинства металлов. Олово входит в состав типографского сплава гарта, расширяющегося при затвердевании, и в состав бронз — сплавов на основе меди. [c.306]

    При непрерывном изменении состава вольфрамовых бронз непрерывно меняются и их свойства. Чем ближе х к единице (Ь аЦ/Оз), тем сильнее выражены металлические свойства. Так, соединение Ызо эШОз обладает золотистым цветом, характерным металлическим блеском, высокой электрической проводимостью и теплопроводностью, что н дало основание назвать эти соединения бронзами, хотя ничего общего со сплавами на основе меди эти фазы не имеют. По мере уменьшения содержания катионообразователя свойства становятся все более неметаллическими, вплоть до проявления диэлектрического характера у ШОд. Структурными единицами кристаллов вольфрамовых бронз являются радикалы ШОз, образующие кубическую решетку. В пустотах кристаллической решетки находятся внутренние атомы катионообразователя (Е1, Ма, К, КЬ, Сз, Са, Ва, Т1, РЬ). Ионизация внутренних атомов приводит к делокализации электронов в пределах всей решетки, что формально снижает степень окисления вольфрама пропорционально содержанию катионообразователя. Наличие делокализованных электронов и придает кристаллу металлические свойства. [c.343]

    Использование металлов и их соединений. Бериллий, хотя и дорогой металл, находит применение для приготовления бериллиевых сплавов. Бронзы на основе меди, содержащие 2—4% бериллия, употребляют для поделки инструментов, работающих с легковоспламеняющимися веществами во взрывоопасных помещениях. Сплавы бериллия с алюминием применяются в авиации, никелево-бериллиевые сплавы идут на изготовление пружин высокого качества. Добавки бериллия сообщают сплавам твердость и прочность, коррозионную устойчивость, увеличивают тепло- и электропроводность. Чистый бериллий хорошо пропускает рентгеновы лучи, поэтому его применяют в изготовлении рентгенрвых трубок для выпуска из них лучей через оконца, закрытые бериллиевыми пластинками. Сплавы магния,особенное алюминием, имеют небольшую плотность и широко применяются в качестве конструкционных материалов в авиа-, автостроении, в ракетной [c.277]

    Медь исп0.1ьзу 0т для Из меди, обладающей хорошей теплопроводностью, кухонной утвари. изготавливают кухонную посуду. Высокая электро-.. э.аектр неских проводность меди делает ее исключительным мате-1 .ис. ей. риалом для изготовления электрических проводов и кабелей. Медь устойчива к коррозии и из нее изготавливают детали водяных насосов. Широкое применение находят сплавы на основе меди латунь (Си, 2п), бронза (Си, Зп), сплав для чеканки монет (Си, N1) .  [c.541]

    Печи для плавки сплавов на основе меди. Канальные индукционные печи для плавки и подогрева меди и спла ВОВ на медной основе (латуни, бронзы, томпака, мель хиора и т. п.) изготавливаются как периодического, так и непрерывного действия (миксеры). Корпус печи кон струируется прямоугольной или цилиндрической формы В последнее время применяют печи барабанного типа со сменными индукционными единицами. На рис. 3.10 при ведена конструкция печи ИЛК-16, имеющей цилиндри ческую ванну и щесть индукционных отъемных единиц Футеровка выполняется из шамотной набивной массы Теплоизоляцией служит диатомитовый кирпич. При плавке латуней и бронз температура разлива составляет 1100—1200° С. Большой перегрев металла свыше указанного значения может вызвать так называемую цинковую пульсацию, которая возникает при парообразовании цинка, входящего в состав расплава (цинк кипит при 916° С, тогда как температура плавления меди 1083° С). Цинковая пульсация выражается в кратковременном прекращении тока в каналах печи и затем его восстановлении, так как парообразование при исчезновении тока прекращается. Это приводит к характерному качанию стрелок измерительных приборов. [c.124]


Смотреть страницы где упоминается термин КЭП на основе меди: [c.324]    [c.2]    [c.43]   
Смотреть главы в:

Комбинированные электрохимические покрытия и материалы -> КЭП на основе меди




ПОИСК







© 2025 chem21.info Реклама на сайте