Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа вязкость

    Как видно из табл. 5, у образцов концентрата ВЗМ-МЛ-1, изготовленных на нейтральных сульфонатах с щелочным числом 17-33 мг КОН/г, не изменяются кислотные и щелочные числа в сравнении с расчетными величинами. Образцы покрытия, изготовленного на этих сульфонатах, прекрасно смачивают металл, хорошо пропитывают порошок окиси железа, вязкость их не изменяется во времени. [c.20]

    Убыль воды в результате испарения во время работы ванны восполняется добавлением ее в соответствии с измеряемым удельным весом электролита. Следует учитывать, что в связи с накоплением в электролите железа вязкость его повышается. Поэтому добавление воды в электролит для электрополирования углеродистой стали производят в следующем порядке до 75 а-ч л электролита вода добавляется для удельного веса раствора 1,74—1,76, свыше 75 а-ч л — до удельного веса 1,76—1,78. [c.136]


    Процесс получения железа начинается со стадии выплавки чугуна, содержащего значительное количество углерода (который попадает в чугун из кокса или древесного угля, используемых для плавления руды). Чугун отличается очень большой твердостью, но он хрупок. Из чугуна можно полностью удалить углерод. Образующееся в результате этой операции сварочное железо представляет собой ковкий, но относительно мягкий материал. В него вновь вводят некоторое количество углерода и в результате получают сталь, которая обладает достаточной вязкостью и в то же время достаточной твердостью. [c.138]

    Повышение температуры конца кипения вакуумного газойля, выделяемого из данного мазута, сопровождается возрастанием вязкости (иногда до 12 мм /с при 100 °С), а также показателя его коксуемости [например, с 0,2 до 0,9 % (масс.) по Конрадсону, реже до 1,2 % (масс.)], увеличением содержания в нем серы и азота, смол, тяжелых ароматических углеводородов и металлов, в частности ванадия, никеля и железа. [c.53]

    Относительная скорость изменения характеристической вязкости бутадиен-стирольного каучука в индукционном периоде окисления при термоокислительной деструкции в присутствии меди, марганца и железа и различных антиоксидантов [48] [c.631]

    В качестве товарного реагента рекомендуют применять кислоту соляную, техническую синтетическую (ГОСТ 857—78) с содержанием хлористого водорода не менее 31 % железа — не более 0,02 % серной кислоты — не более 0,005 % или соляную кислоту ингибированную с содержанием НС 22 % (ТУ 6-01-714—77). Этот реагент имеет плотность 11.54— 1188 кг/м , вязкость при 20 °С 2 мПа с, температуру замерзания минус 58 °С. Товарную соляную кислоту от заводов-поставщиков до баз хранения транспортируют в гуммированных стальных цистернах. [c.10]

Рис. 51. Влияние содержания хлорного железа в водном растворе ПА.Л на вязкость и pH раствора Рис. 51. Влияние содержания <a href="/info/16262">хлорного железа</a> в <a href="/info/6274">водном растворе</a> ПА.Л на вязкость и pH раствора
    Раствор фосфорной кислоты, полученный после отделения фосфогипса фильтрацией, загрязнен перешедшими в раствор примесями фосфата кремнеземом, сульфатами и фосфатами железа и алюминия и т. п. Оптимальные условия экстракции определяются стремлением получить возможно более высокую концентрацию кислоты, крупные, хорошо фильтрующиеся кристаллы фосфогипса и ускорить процесс экстракции. Скорость растворения фосфата лимитируется скоростью диффузии ионов водорода к поверхности частиц фосфата или ионов кальция из пограничного слоя в объем раствора. При высоких концентрациях возрастает вязкость растворов фосфорной кислоты, что замедляет скорость диффузии и снижает скорость растворения. Крупные кристаллы гипса получаются при 70—80°С и невысокой концентрации серной кислоты. Для получения более концентрированной фосфорной кислоты и ускорения процесса применяют 75%-ную серную кислоту и более высокую температуру в начале экстракции. Скорость экстракции [c.150]


    Механические свойства металлических материалов при низких температурах определяются типом их кристаллической решетки. У металлов с кристаллической решеткой типа гранецентрированного куба (медь, алюминий, никель, свинец, железо-у, аустенитные стали) при понижении тем пературы наблюдается увеличение пределов текучести и прочности, повышение твердости и уменьшение ударной вязкости. [c.131]

    Механические свойства сплавов зависят от структуры составляющих их фаз и определяются как процентным соотношением, так и характером распределения этих фаз. Так, в стали с аустенитно-ферритной структурой появление хрупкости в условиях низких температур связано с количеством и формой ферритной фазы с кристаллической решеткой железа-а. Наличие же аустенитной фазы с решеткой железа-у способствует повышению пласти ности и вязкости стали при низких температурах [119], [c.132]

    В области низких температур ударная вязкость сталей с наибольшим содержанием никеля уменьшается достаточно плавно. Однако для сталей с объемноцентрированной структурой кристаллической решетки (ферритные стали, содержащие железо-а) даже при содержании в них 8,5% никеля порог хладноломкости оценивается температурой всего лишь —195 °С. Поэтому как материалы для изготовления оборудования, предназначен-, ного для жидко водорода ( кип. = —253°С), они не представляют интереса [137]. [c.136]

    Стали аустенитного класса (основа — железо-у) сохраняют достаточную пластичность и приемлемую вязкость вплоть До температур жидкого гелия (—270 °С) и, следовательно, являются важнейшими конструкционными материалами для изготовления узлов оборудования, работающих при самых низких температурах (ниже —200°С) [119, 139]. [c.136]

    Основным легирующим элементом нержавеющих сталей является хром, который облагораживает электродный потенциал стали и повышает ее коррозионную стойкость. Повышение коррозионной стойкости при увеличении содержания хрома в стали происходит скачкообразно. Первый порог коррозионной устойчивости достигается при концентрации хрома, равной 12,8%, что соответствует 1/8 атомной доли хрома в соста,ве стали. Для обеспечения коррозионной стойкости стали это количество хрома должно находиться в твердом растворе железа и не образовывать карбидов. При увеличении его содержания до 18% или до 25—28% достигается второй порог и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако увеличение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Поэтому стали с высоким содержанием хрома после сварки требуют термической обработки. [c.40]

    Вязкость нафтеновых кислот увеличивается с возрастанием молекулярного веса, поверхностное натяжение на границе с водой и воздухом уменьшается. Нафтеновые кислоты корродируют такие металлы, как свинец, цинк, медь, олово, железо, образуя соот- [c.73]

    Нафтенаты тяжелых металлов образуются в результате обменного разложения нафтенатов щелочных металлов и окислов соответствующих металлов. Наибольшее промышленное значение имеют нафтенаты кобальта, марганца, свинца, цинка и железа. Для защиты деревянных конструкций, шпал, рыболовных снастей от действия вредителей и микроорганизмов применяют нафтенат меди. В качестве инсектицида в сельском хозяйстве используют нафтенаты щелочных металлов (натрия, калия). Они менее вредны для растений, чем нафтенаты меди, и обладают более направленным действием. Нафтенаты алюминия, кальция и цинка добавляют к пластическим смазкам для повышения их вязкости и предотвращения расслоения смазок под большим давлением. Нафтенаты свинца, цинка [c.261]

    Стали. Сталью называют сплавы, содержащие главным образом железо и незначительное количество углерода (примерно до 1,7%). С увеличением содержания углерода возрастает твердость стали и уменьшается ее ударная вязкость, т. е. сопротивление ударной нагрузке. При небольшом содержании углерода (0,2— [c.80]

    Главная масса никеля идет на производство различных сплавов с железом, медью, цинком и другими металлами (см, разд. 32.2, 33.3). Присадка никеля к стали повышает ее вязкость и стойкость против коррозии. [c.529]

    В чугуне углерода содержится до 1,7% и более, в стали— от 0,3%) до 1,7%), а в ковком железе — менее 0,3%. Однако существуют специальные так называемые легированные стали, в состав которых, помимо железа и углерода, входят в определенных количествах хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Введение тех или иных металлов в железо дает возможность получать стали с нужными свойствами (повышенной тугоплавкостью, прочностью, кислотостойкостью и т. д.). Так, хром повышает твердость стали и ее химическую стойкость никель увеличивает вязкость вольфрам сильно повышает твердость ванадий (0,2—0,5%) повышает твердость и вязкость молибден (0,15—0,25%) повышает упругость и улучшает свариваемость. [c.281]

    К металлам обычно относят простые вещества, являющиеся хорошими проводниками электричества (проводники первого рода) и тепла, обладающие характерным металлическим блеском (высокой способностью отражать свет), непрозрачностью, вязкостью, ковкостью, тягучестью. Металлические свойства сохраняются только в твердом и жидком состояниях, в парах они исчезают. Типичными металлами являются натрий, калий, железо, медь, золото и др. [c.215]


    Наличие мыл в o iase обусловливает увеличение загущающей способности концентрата в уайт-спирите и снижение уровня поверхностных свойств состава уменьшается растекаемость, поднятие по зазору и пропитка порошка киси железа. Вязкость образца, изготовленного на алкилбензолсульфонате кальция с щелочным числом 147 мг КОН/г, через месяц возросла на 66%. [c.20]

    Безборные силикатные расплавы оказывают более заметное окислительное действие на сталь и тем самым вызывают интенсивное газовыделение, преимущественно за счет окисления углерода стали. Вследствие повышенного коррозионного действия на сталь они усиливают также выделение водорода из стали. При этом вязкость и поверхностное натяжение безборных расплавов, как правило, выше чем борных. Поэтому на поверхности стали формируются более крупные пузыри, лопаюшиеся с трудом. Таким образом, при замене борных эмалей безборными количество газов, выделяющихся из стали, увеличивается, а возможности прорыва газов через слой вязкого расплава и заплывания кратеров уменьшаются. В результате растворения в расплаве окислов железа во время обжига это различие между борными и безборными эмалями становится еще более контрастным. При растворении окислов железа вязкость безборных эмалей в условиях низкотемпературного обжига возрастает, а вязкость борных эмалей уменьшается [167]. [c.111]

    При получении гликопротеипа из подчелюстных желез быка по Пигману (ПЖБ-П) в отличие от ПЖБ-Г используется экстракт из ткани железы в виде муцинового сгустка или материала, осажденного детергентом [24]. Небольшие кусочки железы экстрагируют, при этом клетки не разрушаются, а в растворимое состояние переходит преимущественно секрет из протоков железы, вязкость которого обусловлена главным образом содержанием ПЖБ-П. [c.144]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сплавам железа коррозионную стойкость, вязкость и твердость. Технеций коррозионностоек и устойчив против действия нейтронов, поэтому может применяться как конструкционный материал для атомных реакторов. Рений в основном используется в электротехнической промьшленности и как катализатор. [c.571]

    Из-за необходимости точного поддержания температуры, а также проблемы отвода тепла используются многотрубчатые реакторы (длиной труб 3000ЛЛ1 и диаметром 25жл1). Ввод тепла осуществляется теплоносителями (дифенилом, диэтилфталатом или нефтепродуктами вязкостью 4—5 °Езо и температурой вспышки выше 210 °С). Материал реактора не должен катализировать разложение окиси этилена используют аустенитные стали, гальванизированное или посеребренное железо, [c.167]

    Главная масса никеля идет на производство различных сплавов с железом, медью, цинком и другими металлами. Присадка никеля к стали повышает ее вязкость и стойкость против коррозии. Сплавы на основе никеля можно разделить на жаропрочные, магнитные и сплавы с особыми свойствами. Жаропрочные сплавы никеля используются в современных турбинах и реактивных двигателях, где температура достигает 850—900 °С таких температур сплавы на основе железа не выдерживают. К важнейшим жаропрочным сплавам никеля относятся нимоник, инконель, хастеллой. В состав этнх сплавов входит свыше 60% никеля, 15—20% хрома и другие металлы. Производятся также металлоксрамические жаропрочные сплавы, содержащие никель в качестве связующего металла. Эти снлавы выдерживают нагревание до 1100 °С. Широко применяются для изготовления элементов электронагревательных устройств сплавы типа нихром а, простейший из которых содержит 80% никеля и 20% хрома. [c.694]

    Начальные участки поляризационных кривых (рис. 293) указывают на преобладание катодного контроля при коррозии железа в расплаве Na l, а значение энергии активации катодного процесса в этой области (18 ккал/моль — рис. 294) близко к значению энергии активации вязкости Na l (13 ккал/моль), что указывает на контроль катодного процесса диффузией основного деполяризатора (кислорода) к катоду, скорость которой в значительной мере зависит от вязкости расплава. [c.409]

    Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, в частности хлорное железо, хлористый кальций и хлористый натрий, как правило, заметно снижают вязкость (рис. 51, 52, 53). Указанные соли и их ионы в закачивае.мые растворы попадают из разных источников, например, ионы железа — на стадии приготовления полимерного рас- [c.112]

    Отрицательное влияние некоторых ионов, в частности ионов железа, может быть снято выщелачиванием раствора при добавлении едкого натра. Влияние концентрации NaOH на вязкость и pH 0,05 /о-ного раствора ПАА указано ниже. [c.115]

    Низкомолекулярные кислоты, выделенные из легких нефтяных фракций, представляют собой маловязкие жидкости с резким запахом высокомолекулярные кислоты, выделенное из масляных фракций, представляют собой густые, а иногда полутвердые пе-кообразные вещества. Нефтяные кислоты практически не растворимы в воде, хорошо растворимы в углеводородах. Кислотное число их уменьшается по мере увеличения молекулярной массы и колеблется в пределах 350—25 мг КОН/г. Нефтяные кислоты представляют собой насыщенные соединения, йодное число их невелико. Вязкость нефтяных кислот увеличивается с возрастанием молекулярной массы, поверхностное натяжение на границе с водой и воздухом уменьшается. Нефтяные кислоты способны кор-розионно воздействовать на металлы (свинец, цинк, медь, олово, железо), образуя соответствующие соли алюминий по отношению к ним устойчив. Соли нефтяных кислот за исключением щелочных не растворимы в воде. [c.35]

    Большее содержание железа в исходном боксите, а также наличие в AI I3 невозгоняющегося остатка в количестве более 2,5% уже нежелательны, так как они обусловливают понижение индекса вязкости. [c.167]

    Металлические материалы обладают сочетанием механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими — возмонсностью использования приемов ковки, сварки, обработки режущими инструментами. Они являются незаменимыми не только для построения химических реакторов самой разнообразной формы и размеров, но и в различных областях промышленности. Так, за последние 20 лет мировое производство железа увеличилось примерно в 2,7 раза, меди — в 2,3, алюминия — в 4,7, никеля — в 4, п 1нка — в 2, титана — в 17 раз. [c.175]

    Тонко раздробленные пигменты также мигрируют к границе раздела масло — вода и образуют защитный слой вокруг капель. Все водные окислы (напрпмер, гидратированные формы пятиокиси ванадия, окиси железа и алюминия) поверхностно активны. Поэтому, помимо некоторого увеличения вязкости свежеприготовленной эмульсии, происходящего в процессе их применения, может наблюдаться дальнейший ее рост во время хранения, вызванный прогрессирующей гидратацией окислов. В конце концов, вокруг каждой капли образуется слой геля. Примером могут служить концентрированные эмульсии В/М, в которых окись алюминия (глинозем) размешана в водной фазе (Шерман, 1955с). Когда к водной фазе добавляют пропиленгликоль до концентрации 20%, эти изменения замедляются в зависимости от концентрации пропиленгликоля. При более высоких концентрациях пропиленгликоля образование слоя геля полностью подавляется. Другие полиспирты оказывают тот же эффект. [c.298]

    Соли алюминия и железа, а также хрома в водной среде реакцией обменного разлон ения с натровыми солями нафтеновых кислот образуют только основные соли. Эти соли не растворимы в воде, но набухают в минеральных маслах, сообщая им большую вязкость, имеющую, внрочем, только структурный характер. [c.138]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]

    Наконец, на вязкость растворов высокомолекулярных веществ может влиять введение в раствор небольших количеств некоторых веществ. Из практики, например, известно, что вязкость растворов эфиров целлюлозы при введении все возрастающих количеств спирта сначала падает, а затем возрастает. Подобные же явления наблюдаются и при введении в эти же растворы воды. При добавлении в растворы эфиров целлюлозы солей алюминия, железа, свйнца, кальция, магния и цинка, как правило, вязкость повышается при введении некоторых мыл она уменьшается. [c.464]


Смотреть страницы где упоминается термин Железа вязкость: [c.66]    [c.214]    [c.30]    [c.684]    [c.170]    [c.581]    [c.27]    [c.92]    [c.15]    [c.115]    [c.376]    [c.379]    [c.331]    [c.402]   
Курс коллоидной химии (1976) -- [ c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние электролитов и нагревания на аномалию вязкости золя гидрата окиси железа

Вязкость растворов хлорного железа

Железа окись, золь вязкость в двойном электрическом

Железо хлористое см вязкость раствора в этиловом

Хлористое железо вязкость растворов



© 2025 chem21.info Реклама на сайте