Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Порометры

    Метод ртутной порометрии [c.98]

Рис. 38. Пример построения кривой распределения пор но размерам исходя из данных ртутной порометрии Рис. 38. Пример <a href="/info/1458201">построения кривой распределения</a> пор но размерам исходя из данных ртутной порометрии

    Расчеты показывают, что величина давления, необходимая, например, для вдавливания ртути в переходные поры с радиусами 1000 А, должна быть 75 атм, а в поры с радиусом 16 А —около 4550 атм. Следовательно, для анализа по методу ртутной порометрии необходимо иметь приборы с очень широким диапазоном давлений. Однако это сильно усложнило бы аппаратуру. Поэтому на практике обычно измерение пор проводят с помощью [c.99]

    Модель плоскопараллельных щелевидных пор [64]. В модели постулируется, что щелевидные поры расположены параллельно друг другу и промежутки между щелями одинаковы. Эти допущения позволяют вычислить ширину щели бщ и толщину слоев бс, разделяющих поры, по соотношению бщ = 27/5 бс=2/р5, где V — объем пор 8 — общая поверхность пор р — плотность катализатора. Распределение объема пор по ширине нор определяется, как и для других моделей, методами ртутной порометрии или капиллярной конденсации. Поток -го реактанта в каждую щелевую пору рассчитывается по (3.1), а общий поток /-го реактанта в гранулу — по (3.4). [c.148]

    Метод ртутной порометрии основан на том, что ртуть при атмосферном давлении не входит в поры образца, погруженного в нее. Если извне приложить добавочное давление, то ртуть войдет в поры, сжав имеющийся воздух до пренебрежимо малого объема, который, однако, трудно проконтролировать. Скорость возрастания объема вдавливаемой в образец ртути в зависимости от повышения давления является функцией распределения пор по размерам, что дает возможность получить как дифференциальную, так и интегральную кривые распределения. К достоинствам метода относится возможность одновременной оценки общего объема пор образца (т. е. величины ео). К недостаткам, помимо вышеуказанной неконтролируемости объема сжатого в образце воздуха, следует отнести возможность деформации самого материала мембраны (особенно в случае полимерной мембраны), фиксирование тупиковых пор, а также непригодность образца к дальнейшей работе вследствие амальгамирования пор. [c.102]

    В катализаторе определяют содержание серебра, щелочноземельных металлов, щелочных металлов и таких вредных примесей, как тяжелые металлы, сера и галогены. Исследование физических свойств включает измерение поверхности методом БЭТ, обычно по криптону из-за малой площади поверхности. Для измерения пористости при контроле качества катализатора можно применять ртутную порометрию, несмотря на известную тенденцию серебра к амальгамированию, так как этот процесс сильно замедляется на окисленной поверхности. Состав поверхности катализаторов определяется современными методами, связанными с использованием высокого вакуума. Из них наиболее важны рентгеновская фотоэлектронная спектроскопия (РФЭС), масс-спектрометрия вторичных ионов (МСВИ) и электронная оже-спектроскопия (ЭОС). [c.240]


    Объем макропор Ума (в м кг) определяется с помощью ртутной порометрии как объем ртути, вдавливаемой в поры при повышении давления от 127 до 7350 кПа. [c.371]

    Метод ртутной порометрии основан на измерении объема ртути, вдавливаемой в поры катализатора при разных давлениях. Зависимость эквивалентного радиуса пор / экв. в которые входит ртуть, от давления описывается уравнением Уошберна  [c.372]

    Согласно ряду зарубежных стандартов при измерении кажущейся плотности применяют методику, предусматривающую определение объёма навески кокса (массой 100 или 200 г) в вакууме с помощью ртути на зернах крупностью 2,0-6,3 мм. Международная организация по стандартизации ИСО также рекомендует указанную методику (ИСО 481) в качестве международного стандарта. Методом ртутной порометрии можно определить и распределение пор по диаметру. [c.34]

    Поровые характеристики катализаторов (удельный объем пор, удельная поверхность и средний радиус пор) исследовали методом ртутной порометрии на приборе Порозиметр-70 . Прибор рассчитан на максимальное явление 200 МПа и позволяет определить поры радиусом 5 10 -50 10 м. Порограммы обрабатывали по известной методике [67] и находили распределение пор по величине радиусов. На основе порограмм рассчитывали удельный объем пор и удельную поверхность катализатора по формуле  [c.72]

    УПРОЩЕННЫЙ ПОРОМЕР НИЗКОГО ДАВЛЕНИЯ И НЕКОТОРЫЕ ЗАМЕЧАНИЯ К МЕТОДИКЕ РТУТНОЙ ПОРОМЕТРИИ [c.230]

    Упрощенный поромер низкого давления и некоторые замечания к методике ртутной порометрии. Б у т ы р и и Г. М В сб. Конструкционные материалы на основе углерода , № 10. М., Металлургия , 1975, с, 230—236. [c.271]

    На проявлении капиллярного давления основана ртутная порометрия—метод, широко используемый для определения объема пор и их распределения по размерам в различных пористых материалах керамике, углях, адсорбентах, катализа- торах. Ртуть очень плохо смаивает [c.39]

    Из косвенных методов наиболее распространены методы вдавливания ртути, полупроницаемой мембраны, центрифугирования, смеси-мого вытеснения, капиллярной конденсации, продавливания жидкости и др. Одним из наиболее точных косвенных методов является ртутная по-рометрия [30, 63, 84]. Для однородных структур твердых тел сходимость отдельных точек кривой распределениях объемов пор по их размерам составляет 2% [2]. Метод ртутной порометрии основан на свойстве ртути не смачивать поверхность твердых тел, определяя объем вошедшей в поры образца ртути в зависимости от приложенного давления. Методом ртутной порометрии можно определить размеры пор от 0,01 до 100 мкм. Метод нашел широкое применение для исследования пористой структуры адсорбентов. К достоинству метода можно отнести и быстроту проведения исследований (опыт занимает 30-40 мин). [c.68]

    Характеристика образцов, используемых в опытах по порометрии [c.70]

    Характеристика используемых в порометрии образцов приведена в табл. 13. [c.70]

    Абсолютное распределение объема пор по размерам исследуемых образцов было определено методом ртутной порометрии. [c.73]

    Полученные данные еще раз подтверждают вьшоды об идентичности данных, полученных ртутной порометрией и методом полупроницаемых перегородок для пор меньше 1,3 мкм. [c.74]

    Физическая адсорбция, хотя и не играет peшaюп eй роли в гетерогенном катализе, тем не менее она полезна как средство для исс едования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых кат.ализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией. [c.87]

    Для экспериментального измерения объемов макро-пор радиусом более 1000 А и переходных пор радиусом от 16 до 1000 А используют методы капиллярной конденсации или ртутной порометрии. Микропоры менее 15 А исследуют преимущественно адсорбционным методом, позволяющим оценивать лищь их общий объем. [c.96]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]


    Помимо различных вариантов адсорбционного метода на практике получили распространение такие методы определения удельной поверхности твердых тел, как ртутная порометрия, электронная микроскопия, рентгеновский метод, метод газовой проницаемости в различных режимах течения газа и др. Каждый из перечисленных методов обладает своими достоинствами и недостатками. Сле цует только отметить одну из отличительных особенностей метода газовой проницаемости, имеющую иногда большое значение на практике, — возможность опредё-лять внешнюю геометрическую поверхность дисперсных тел [21]. [c.373]

    Важными характеристиками затвердевшего цементного камня являются объем пор и распределение объема пор по размерам, т. е. относительное число пор различных размеров.. Суихествуют различные методы порометрии, однако наибольшее применение для цементного камня нашел метод ртутной порометрии. По этому методу в высушенный образец исследуемого цементного камня вдавливают ртуть. Чем выше давление, тем в поры меньшего размера проникает ртуть. Измеряя объем ртути, вошедшей в поры под различным давлением, получают данные для расчета содер жания нор различного размера. [c.117]

    Пористую структуру (графита и изменения, лроисхо-дящ ие в ней при проп-итках, хараетеризовали по данным ртутной порометрии и коэффициенту фильтрации. Неп-ропятаняые материалы имеют значительную пористость с размером пор в основном около 1 мкм. Кроме этих пор графит маро к ХАГ и ЭГ имеет поры размером [c.109]

    Из данных ртутной порометрии для материалов П и П1 серий (рис. 5) следует, что в общих чертах сохраняется тенденция, наблюдавшаяся и для материалов I серии, с той лишь разницей, что на ф0р1мир01вание пористой структуры о бразцов, И Зготовленных методом горячего прессования, с практически нулевой открытой пористостью В исходном состоянии более существенно влияет процесс карбонизации связующего при термообработке iB интервале температур 300—600°С, а также гранулометрический состав кокса-наполнителя. Пористая структура образцов И серии с ТТО 1900 и 2300°С практически сходна и характеризуется преобладанием пор с размером радиусов более 1 мкм, причем в материале имеется достаточно большой (0,04—0,05 см /г) объем макро-пор (г более 10 мкм [4]), на которые приходится матси-мум распределения. Эти поры могут выполнять роль транспортных каналов к более мелким — переходным порам. О бъем пор с размером радиусов менее 1 мкм для этих материалов составляет около четверти (22—26%) всего объема открытых пор. [c.174]

    Изучено влияние многократных пропиток фенолформальдегидной смолой РФН-60 и фуролфенольной композицией ФФФ на изменение пористости, распределение пор по размерам и проницаемости графитов марок МГ, ХАГ и ЭГ. Пористая структура графита и изменения, гфоисходящие в ней при пропитках, характеризовались по данным ртутной порометрии и коэффициенту фильтрации. Объем пор непрерывно уменьшается от 0,2 до 0,01 см /г с увеличением количества пропиток. Средний эффективный радиус преобладающих пор также уменьшается, но после второй пропитки остается неизменным. Поры размером более 1 мкм пропадают после первой пропитки. Коэффициент фильтрации значительно уменьшается (с 4—30 до 1 10- см /с) после первой пропитки, а после второй и третьей пропиток уменьша ется еще на один порядок. Ил. 2. Табл. 3. Список лит. 4 назв. [c.263]

    Экспериме н т а л ь н о ртутная порометрия осуществляется путем вдавливания ртути в пористый материал и сводится к определению объема [c.37]

    Пористость. Порограмму пористого тела с эквивалентным радиусом пдр 2,5—3500 нм можно получить на ртутной порометри-ческой установке П-ЗМ, состоящей из порометров низкого и высокого давлений. Ртуть, вдавливаемая в пористое тело, преодолевает сопротивление, численно равное величине произведения периметра поры на- поверхностное натяжение ртути и косинус угла смачивания. [c.168]

    Истинная плотность кристаллических веществ определяется по рентгеноструктурным данным. В материалах, не содержащих изолированных пор, истинную плотность можно оценить пикнометрически, взвешивая материал в неадсорбирующейся среде, например в гелии при повышенной температуре. Пористость, обусловленная сквозными н тупиковыми порами, называется эффективной. Одним из наиболее распространенных методов оценки эффективной пористости является метод ртутной порометрии. По этому методу образец материала тщательно дегазируют под вакуумом, а затем погружают в ртуть. Повышая давление, находят объем ртути, проникающей в поры образца. По функциональной зависимости объема ртути, вошедшей в поры, от приложенного давления можно найти распределение пор по размерам. Метод ртутной порометрии применим к материалам, не взаимодействующим со ртутью и не смачиваемых ею (в противном случае она сама втягивается в капилляры). [c.69]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

    Тесные контакты коллондной химш со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с классическими методами эксперимента, родившимися именно в коллоидной химии (определение поверхностного натяжения, ультрамикроскопия, диализ и ультрафильтрация, дисперсионный анализ и порометрия, изучение рассеяния света и т. п.), в разных разделах коллоидной химии эффективно используют всевозможные спектральные методы (ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия), рентгеновские метода, радиоактивные изотопы, [c.5]

    Центробежный метод [26, 85] основан на предположении, что при центрифугировании насыщенного жидкостью образца давление вытеснения, создаваемое центробежными силами, равно давлению в капиллярах породы, из которых вытесняется жидкость. Однако при определении поро-метрической характеристики образцов количество определений ограничено числом режимов, развиваемых используемой центрифугой, к тому же создаваемые градиенты давления достаточно высоки уже на первых режимах, поэтому не удается получить начальный участок порометри-ческой характеристики образцов при использовании данного метода. [c.68]

    Как следует из обзора методов определения порометрической характеристики пористых сред, наиболее подходящим методом является метод полупроницаемой мембраны с использованием насьш1ающей жидкости, не образующей граничных слоев. Поэтому были проведены опыты по сопоставлению методов ртутной порометрии и полупроницаемой перегородки с использованием в качестве насыщающей жидкости глубокоочищен-ного неполярного керосина. [c.72]

    На основании полученных экспериментальньгх данных были рассчитаны значения средних радиусов пор пористой среды (из выражения (43) = = 1,35 мкм) и системы пористая среда-керосин (из выражения (38) при OS 0=1). Средние значения радиусов пор, определенные по данным ртутной порометрии и ККД по керосину, практически совпадают (рис. 29). [c.74]


Смотреть страницы где упоминается термин Порометры: [c.38]    [c.130]    [c.264]    [c.303]    [c.169]    [c.152]    [c.102]    [c.196]    [c.652]    [c.132]   
Фотосинтез (1972) -- [ c.125 , c.137 , c.152 , c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Порометрия



© 2025 chem21.info Реклама на сайте