Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты разделения кислородсодержащих

    Первоначально в качестве экстрагента использовался диэтиловый эфир. Однако его летучесть и огнеопасность заставили искать другие реактивы. Из кислородсодержащих органических растворителей (спиртов, сложных эфиров, кетонов) наилучшим оказался бутилаце-тат. Если при экстракции галлия из солянокислого раствора диэтиловым эфиром коэффициент распределения (при кислотности 5,5 н.) равен максимально 75, то при экстракции бутилацетатом (кислотность 6 н.) он превышает 400. Коэффициент разделения галлия и алюминия при экстракции этим реагентом практически не зависит от соотношения их концентраций в растворе и составляет 2-10 [901. Еще больший коэффициент распределения галлия получен при экстракции метилизобутилкетоном ( 2800). Однако этот растворитель недостаточно селективен — экстрагирует не только трехвалентное, но и двухвалентное железо, а также медь, цинк, ванадий и другие металлы [75]. [c.253]


    Разделение. низкомолекулярных кислородсодержащих соединений можно производить также, используя воду как разделяющий агент. Так, метилэтилкетон отгоняется из смеси с втор-бу-танолом путем экстрактивной ректификации с водой [340]. При ко.нцентрации воды 86—88 мол.% коэффициент относительной летучести метилэтилкетона возрастает с 1,86 до 2,43. Другим примером разделения смесей кислородсодержащих соединений является отгонка диизопропилового эфира из смеси его с изопропиловым спиртом и водой. При ректификации этой смеси с одновременным орошением колонны водой отгоняется изопропиловый эфир, не содержащий спирта. Отделение растворенной в эфире воды производится путем отгонки азеотропа эфир-вода с отбором водного слоя [341]. [c.285]

    Коэффициенты селективности некоторых стационарных фаз для разделения гомологических рядов кислородсодержащих органических [c.5]

    Коэффициенты селективности некоторых стационарных фаз для разделения гомологических рядов кислородсодержащих органических соединений в интервале температур кипения 50—150° С [c.146]

    Значительное место занимают работы по экстракции неорганических соединений. Изучено взаимное влияние металлов при их экстракционном выделении, особенно важное при извлечении больших количеств одного металла на фоне микроколичеств других. Практическое значение этой работы весьма велико даны рекомендации по выбору растворителя и условий для эффективного концентрирования микроэлементов путем удаления элемента-матрицы. Показана возможность разделения даже очень близких по свойствам элементов, например железа(П1) и галлия в случае экстракции их из солянокислых растворов кислородсодержащими растворителями. Хотя оба элемента экстрагируются в обычных условиях с высокими коэффициентами распределения, можно подобрать условия (и теория указывает, как это сделать), когда один элемент будет количественно экстрагироваться, а второй полностью оставаться в водной фазе. [c.7]

    Регулирование влияния адсорбции позволяет изменять селективность таким образом, что достигается разделение сложных смесей. Были количественно определены коэффициенты адсорбции (ка) для 30 компонентов на нитриле в качестве жидкой фазы. Адсорбция повышается для соединений, расположенных в следующем порядке циклопарафины, парафины, оле-фины, галогенсодержащие соединения и кислородсодержащие соединения. [c.353]


    Коэффициенты селективности для разделения органических кислородсодержащих соединений на различных неподвижных фазах с т. кип. 50—150° (Байер, 1962) [c.184]

    В результате систематического исследования возможностей применения метода газо-жидкостной хроматографии для анализа и разделения неустойчивых реакционноспособных соединений разработаны условия газовой хроматографии веществ, содержащих одну или несколько тройных связей в сочетании с другими функциональными группами [522]. Для болыпой группы ацетиленовых кислородсодержащих соединений определены относительные параметры удерживания, вычислены индексы Ковача, найдены абсолютные значения коэффициентов распределения при температуре колонки. Найденные величины использованы при вычислении термодинамических констант указанных соединений. [c.80]

    Различия в экстрагирующей способности гомологов проявляются несравненно менее резко [1], хотя стерическая доступность основного кислорода, как и изменение собственной растворимости экстрагента в водной фазе, играют известную роль. Это можно проследить на примере системы простые эфиры — НС1 — Sb (III) [1, 6, 7]. Если диэтиловый эфир экстрагирует до 25% Sb (III) [6], а н-бутиловый — до 11% [1], то диизопропиловый — всего лишь 1—2% [7], а диизоамиловый практически сурьму не экстрагирует [1]. Следует отметить, что хотя простые эфиры и уступают другим классам соединений в отношении величины коэффициентов распределения, они имеют значительные преимущества при разделении отдельных элементов. Сопоставление результатов наших предыдущих исследований с литературными данными для других кислородсодержащих растворителей позволяет считать простые эфиры, и особенно те из них, углеводородная цепочка которых разветвлена, наиболее избирательными экстрагентами при извлечении элементов из растворов галогеноводородных кислот. Различия в свойствах галогенидов одного и того же элемента в разных валентных состояниях, а также галогенидов различных элементов резче всего проявляются при использовании растворителей с низким дипольным моментом. Напротив, эти различия полностью нивелируются для растворителей с высоким дипольным моментом. [c.166]

    Значительное влияние на коэффициенты распределения оказывает и концентрация водородных ионов в водных растворах. При экстракции кислородсодержащими органическими растворителями это влияние обусловлено участием ионов водорода в образовании экстрагируемого соединения, а также связыванием части экстрагента в соединение с кислотой. Изменение pH водного раствора может менять и равновесную концентрацию анионов, входящих в состав экстрагируемой соли в случае анионов слабых кислот. Влияние pH раствора на коэффициенты распределения особенно существенно при экстракции внутрикомплексных соединений. Эту зависимость широко используют для разделения элементов и при исследовании гидролиза солей. В последнем случае предполагается, что продукты гидролиза не переходят в органическую фазу. [c.88]

    Влияние природы растворителя на экстракцию координационно не насыщенных (в указанном выше смысле) комплексов может быть настолько резким, что появляется возможность производить разделение координационно насыщенных и ненасыщенных I соединений. Общая схема разделения такова. Координационно насыщенные внутрикомплексные соединения экстрагируются инертными растворителями (бензол, ССи). Гидратированные комплексы остаются при этом в водной фазе и могут быть затем извлечены раствором реагента в активном кислородсодержащем растворителе, причем нередко при том же pH. Во многих случаях использование смеси двух экстрагентов приводит к значительному увеличению коэффициентов распределения элементов по сравнению с суммой коэффициентов, полученных на основе допущения об аддитивности действия реагентов (эффект синергизма). Такого [c.152]

    Количество неподвижной фазы выбирается также и в зависимости от коэффициентов распределения разделяемых веществ. График зависимости ВЭТТ от коэффициента распределения проходит через максимум, причем положение такого максимума сдвигается в сторону больших коэффициентов распределения при уменьшении количества неподвижной фазы. Если условия разделения компонентов отвечают максимуму ВЭТТ, это приводит к резкому ухудшению работы колонки. Поэтому использование небольших количеств неподвижной фазы выгодно в случае разделения веществ с большими коэффициентами распределения, в то время как для разделения легкокипящих кислородсодержащих веществ целесообразно увеличить количество неполярной неподвижной фазы. [c.34]

    Влияние на избирательность извлечения. В литературе накоплены обширные данные о коэффициентах распределения многих элементов при экстракции их различными органическими растворителями (см. главу II). Об избирательности извлечения данного элемента можно судить по найденным из этих данных величинам коэффициентов разделения (х = DulDux)i согласно которым, например, кислородсодержащие растворители довольно селективно извлекают Au(III), Tl(III), Sb(III), Ga, Fe(III), а сульфиды — Au (III), Hg (II), Pd, Ag. Однако эти данные не могут быть использованы для выяснения вклада одной лишь природы растворителей. При неизменном составе водной фазы избирательность [c.54]


    К кислородсодержащим терпеноидам относятся эфиры, лактоны и производные фурана. По хроматографическому разделению этих соединений было проведено мало работ. Цинеол (внутренний эфир), встречающийся во многих эфирных маслах, отделяют от других кислородсодержащих терпеноидов на полярных и неполярных набивках. Он элюируется относительно быстро на колонках обоих типов и лучше отделяется от других кислородсодержащих терпеноидов на полярных набивках (см. табл. 36). Так, коэффициент разделения цинеола и линалоола составляет 1,47 на силиконе D. . 550 и 3,9 на гипрозе S.P.80H5]. Диацетатгексаизобутиратсахароза также обеспечивает хорошее отделение цинеола от других кислородсодержащих производных. Его удерживаемый объем на большинстве набивок примерно равен удерживаемому объему углеводорода d-лимонена, хотя в этом случае коэффициент разделения различен на разных неподвижных фазах. [c.377]

    Приведенные примеры показывают возможность отделения от сопутствующих примесей на стадии концентрирования, которое возможно только в случае резко различающихся коэффициентов распределения. Если анализируются сложные смеси с близкими значениями К у определяемых и сопутствующих примесей, применяют высокоэффективные, в том числе капиллярные колонки. Все же для серийных анализов, особенно при определении узкого круга веществ, целесообразнее использовать селективные хроматографические колонки в сочетании с приемами реакционной газовой хроматографии. В качестве примера можно привести определение примесей ароматических углеводородов в растворе уксусной кислоты, содержащем в соизмеримых концентрациях парафино-нафтеновые углеводороды и ряд кислородсодержащих веществ [16]. Для разделения использовалась аналитическая колонка с цианэтилиро-ванным пентаэритритом,которая устанавливалась после форколонки для поглощения уксусной кислоты и [c.205]

    При высоких давлениях и малой скорости скольжения деталей масло постепенно вытесняется и трушиеся поверхности оказываются разделенными лишь тонкой пленкой масла. В этих условиях коэффициент трения мало зависит от вязкости масла и определяется другим его свойством, получившим название смазывающей способности (маслянистость). Смазывающая способность масел характеризует прочность прилипания масла к металлу. Она обусловлена наличием в масле полярных молекул, например кислородсодержащих веществ. Благодаря ориентации таких молекул на поверхности металла образуется тонкая прочная пленка. [c.213]


Смотреть страницы где упоминается термин Коэффициенты разделения кислородсодержащих: [c.303]    [c.82]    [c.36]    [c.42]    [c.412]   
Руководство по газовой хроматографии Часть 2 (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент разделения



© 2025 chem21.info Реклама на сайте