Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий в почве

    Вода для кратковременного орощения малочувствительных к кадмию почв Водоемы хозяйственно-питьевого назначения [c.55]

    Содер> апис кадмия и почве [c.110]

    Попадание ионов тяжелых металлов в почву может иметь нежелательные последствия, так как ионы никеля, меди, кадмия способствуют ослаблению жизнедеятельности почвенных бактерий, в значительной степени определяющих плодородие почвы. Ионы свинца и кадмия приводят к уменьшению урожая и изменениям в химическом составе растений, причем р увеличением возраста растений концентрация в них кадмия, свинца и цинка повышается. Ионы металлов оказывают вредное воздействие на организм человека. Так, кадмий вызывает заболевание почек, а никель оказывает канцерогенное действие на различные органы человека [3]. [c.4]


    По результатам измерений в 1980-1990-х гг. в странах Западной Европы, поток различных металлов из атмосферы характеризовался следующими величинами [мг/(м год)] РЬ 2-50, 2п 5-35, Си 1-25, N1 0,2-2, Сё и Сг 0,1-1. На северо-востоке США в те же годы поток свинца, цинка и кадмия находился в пределах 20-50, 47-54 и 0,7-2 мг/(м год) соответственно. Поэтому осаждение из атмосферы - один из важнейших путей загрязнения почв и водоемов соединениями тяжелых металлов. [c.248]

    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    Специфическая адсорбция более избирательна, чем неспецифическая, и зависит как от свойств сорбируемых ионов, так и от природы поверхностных функциональных групп, поэтому тяжелые металлы энергично адсорбируются почвами из растворов. Механизм специфического поглощения более свойствен свинцу, чем цинку и кадмию. Коэффициенты селективности, рассчитанные для обменной реакции катионов тяжелых металлов с поглощенным кальцием, подтверждают преимущественное поглощение тяжелых металлов по сравнению с кальцием, а в ряду тяжелых металлов селективность адсорбции свинца более чем в 1000 раз выше, чем цинка и кадмия (табл. 33). Таким образом, процесс трансформации поступивших в почву в процессе техногенеза тяжелых металлов включает следующие стадии  [c.95]

    Кислые почвы поглощают тяжелые металлы из растворов в меньшей степени, чем нейтральные или содержащие карбонаты. В то же время в таких почвах значительное количество меди связывается в комплексные соединения. Кислые почвы имеют меньшее число активных центров, занятых протонами, и ионами алюминия, что снижает возможность адсорбции Си " и Са 1 Карбонатные, богатые кальцием почвы могут в большей степени сорбировать тяжелые металлы. Ион кадмия при этом образует малоустойчивые комплексы. В результате Са более подвижен в почвенном профиле по сравнению с Си " . [c.130]


    В районе медеплавильного завода содержание тяжелых металлов и особенно меди (приоритетный загрязняющий элемент для такого завода) в листьях и хвое древесных растений выше, чем в аналогичных растениях, произрастающих в удаленных от завода местностях. Среди хвойных, произрастающих вблизи завода, содержание меди в хвое прироста последнего года больше всего у сосны, затем идут пихта и ель. Почвы вокруг завода аккумулируют много меди, свинца, кадмия, тогда как растения накапливают преимущественно цинк. Видимых изменений в состоянии растительности не наблюдается при содержании цинка в листьях березы до 500—600 мг/кг, в хвое сосны до 80— 90 мг/кг при содержании меди в листьях березы до 70 мг/кг, в хвое сосны до 40 мг/кг. Не обнаружено заметного угнетения растений мать-и-мачехи даже при высоком содержании тяжелых металлов. [c.145]

    Сильное зафязнение тяжелыми металлами обнаружено вблизи автострад, особенно свинцом, а также цинком, кадмием. Ширина придорожных аномалий свинца в почве достигает 100 м и более. [c.147]

    Поглощение тяжелых металлов почвами существенно зависит от реакции среды, а также от состава анионов почвенного раствора.Было обнаружено, что в кислой среде преимущественно сорбируются свинец, цинк, медь, в щелочной — кадмий и кобальт. [c.148]

    Например, при действии избыточных количеств фтора поражаются кальцинированные ткани и возникает флюороз. Загрязнение рисовых почв кадмием приводит к увеличению содержания элемента в пище в десятки раз, в результате чего развивается специфическое заболевание итай-итай . В Японии загрязнение рыбы ртутью вызвало тяжелую болезнь минамата. В Ираке были зарегистрированы случаи отравления хлебом, выпеченным из пшеницы, протравленной фунгицидами. Применение высоких доз минеральных удобрений вызывает также отравление и различные заболевания. [c.178]

    Молибден с концентрацией около 9,6 мг/л выделяют в форме трисульфида совместно с сульфидами других элементов при анализе вод 1[1400]. При концентрировании 5—50 мкг некоторых микроэлементов (Мо, V, Со, N1, 2п, Си, Ш, А , Н ) на 1 л природной воды соосаждением с сульфидом кадмия (а также сульфидами висмута или цинка) получены удовлетворительные результаты 1[120]. Метод пригоден для полевых условий. С целью выделения следов молибдена при анализе почв его осаждают сероводородом после добавления к раствору соли висмута [1315]. Образующийся сульфид висмута служит коллектором для сульфида молибдена. [c.149]

    Прямое компостирование исходных ТБО без их предварительной сортировки связано с загрязнением почвы тяжелыми цветными металлами. Так, в СССР, по данным исследований, компост в сравнении с фоновыми почвами мог быть значительно обогащен ртутью (в 833 раза), кадмием (21), свинцом (18), медью (17), сурьмой (64), цинком (30). При использовании такого материала в сельском хозяйстве на полях, им удобренных, содержание металлов оказывалось выше, чем на контрольных участках. [c.367]

    Что касается других микроэлементов, например меди, никеля, хрома, марганца, молибдена, ванадия, селена, бора и т. д., то потребность в них организма человека окончательно не установ- ,ена. Возможно, она очень низка и полностью удовлетворяется обычным рационом. Во всяком случае, у людей пока не обнаружено неблагоприятных явлений, связанных с недостатком этих микроэлементов. Однако избыток меди, селена, молибдена, бора, никеля, алюминия, хрома, олова, цинка, который может возникнуть в результате загрязнения при приготовлении пищи или при выращивании растительных продуктов на почвах, обогащенных некоторыми микроэлементами, может вызвать токсические явления. Поэтому во многих странах, в том числе и у нас, содержание этих элементов в пищевых продуктах ограничивается. Особенно строго ограничивается содержание таких высокотоксичных элементов, как ртуть, кадмий, свинец и мышьяк. Медь, цинк, железо и олово в избыточных количествах также вредны для здоровья (подробнее см, с, 88), [c.71]

    Кадмий 0,1-200 Сточные воды, почвы [c.245]

    РД 52.18.286-91 МУ. МВИ массовой доли водорастворимых форм металлов (меди, свинца, цинка, никеля, кадмия, хрома, кобальта, марганца) в пробах почв атомноабсорбционным анализом [c.955]

    Металлические покрытия следует подбирать, опираясь, на Теорию защиты от коррозии. Покрытия из электроотрицательных, активных металлов (цинк, кадмий, алюминий) нужно всегда использовать там, где они будут увеличивать катодную поляризацию стали (коррозия с катодным контролем). Подобные покрытия будут хорошо защищать от коррозии во всех средах, содержащих хлориды (морская, речная вода, почва). Естественно, толщина покрытий должна соответствовать нормам, рекомендуемым для гальванических покрытий. [c.192]

    Уровни содержания тяжелых металлов в почвах зависят от окислительно-восстановительных и кислотно-основных свойств последних вод-но-теплового режима и геохимического фона территории. Обычно с увеличением кислотности почв подвижность элементов возрастает. Так, при pH < 7,7 ионная форма цинка в почве представлена гексааква-ионом [2п(Н20)бР, тогда как при pH > 9,1 отмечается существование 2п(ОН)2 или [2п(ОН)4р (191 . Исследования показали, что тяжелые металлы в почвах содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическими комплексными соединениями, которые могут составлять до 99% от общего количества растворимых форм. Кроме того, ионы тяжелых металлов могут бьггь связаны с минералами как часть кристаллической решетки. Так, значительная доля цинка в почве представлена в виде изоморфных соединений в слюдах, обманках и других минералах. Следует отмстить, что кадмий не образует собственных минералов, а присутствует в них в виде примесей. Его особенностью является также то, что он практически не связывается гумусовыми веществами почв. Особенно высокие концентрации тяжелых металлов в почвах могут наблюдаться в районах расположения рудников и автомагистралей. [c.108]


    В ненаселенных районах имеется соответствие между концентрациями тяжелых металлов на поверхности почвы и в земной коре, что свидетельствует об их относительно низкой подвижности в естественных условиях. В частности, концентрация кадмия в незафязненной почве сельскохозяйственных районов США колеблется от 0,03 до 0,9 мг/кг н соответствует его содержанию в осадочных породах (0,1-1 мг/кг). Однако в загрязненных почвах химическая среда может контролироваться неравновесными процессами, приводящими к накоплению тяжелых металлов и их миграции. Так, внесение медьсодержащих отходов или неорганических солей меди повьшшет концентрацию в почве ионов Си способных [c.108]

    ЦИНК концентрируются преимущественно в корнях растений, тогда как кадмий накапливается в листьях В табл. 2.24 приведены данные по содержанию кадмия в растениях в зависимости от его концентрации в почве. Видно, что лучше всею кадмий аккумулируется в листья < шгшната и кресс-салата. [c.110]

    Учитывая, что тяжелые металлы малоподвижны в почве, их удаление из нее включает, как правило, удаление загрязненного слоя, либо удаление самих металлов с помощью доступных хелатообра 1ующих реагентов (например, этилендиаминтетрауксусной кислотой). При этом металлы переходят в лабильную форму и опускаются в почве на уровень ниже корневой системы Именно эта процедура была с успехом применена в Японии при очистке загрязненных территорий от кадмия. Однако применение комплексообразующих реагентов приводит к загрязнению подземных вод. Поступление тяжелых металлов по пшцевой цепи можно минимизировать выращиванием на загрязненных полях то.[ц>ко кормов для животных или таких культур, которые используются для питания человека в малых дозах. Эффективным средством снижения концентрации подвижных форм тяжелых металлов является известкование кислых почв для увеличения pH [c.110]

    Термин анализ следовых количеств впервые возник при биологических исследованиях. К концу прошлого столетия уже были известны основные компоненты тканей живых организмов — углеводы, белки и жиры, а при анализе растений были обнаружены 10 важнейших элементов С, О, Н, N. 8, Р, К, Са. М , Ре. Позже были найдены также следовые количества других элементов, не вс( гда присутствующих в живых жанях. таких, как В, Со, Си, Мп, Мо, 2п. В организмах животных (редко встречаются бор или марганец, но важным элементом является селен. Заметное влияние на жизненно важные процессы оказывают также Зп. Т1. V, Сг. (N1 и другие элементы, находящиеся в тканях ЖИЕ1ЫХ организмов в следовых количествах. Практически невозможно указать, какие из них наиболее важны, поскольку влияние, оказываемое элементами на жизнедеятельность растений или животных, различно. Такие важнейшие элементы, как В. Си. Мо. 2п, 5е, Сг, находясь в избытке, могут стать для организма ядом. Особенно ядовиты кадмий и серебро даже в следовых количествах. Поэтому очень важно контролировать содержание следовых количеств эж ментов в воздухе, воде, почве, растениях и в организмах животных и людей. [c.407]

    Наряду с рассмотренными выше загрязнениями происходит масштабное неконтролируемое загрязнение земель тяжелыми металлами, главным образом соединениями ртути, свинца, кадмия, железа. Поступающие в почву из окружающей среды тяжёлые металлы находятся преимущественно в виде оксидов и в незначительньк количествах в виде сульфидов и водорастворимых фракций. Процесс трансформации, т.е. преобразования тя-жёльк металлов в почве, включает следующие стадии  [c.53]

    Использование этого соотношения показывает, что для лесных почв умеренного пояса критическая величина потока кадмия из атмосферы составляет всего лишь 0,04-0,06 мг/(м год) (Яхнин и соавт., 1997). Между тем поток кадмия в густонаселенных районах Северного полушария лежит в пределах 0,1-2 мг/(м год). Следовательно, здесь происходит прогрессирующее загрязнение почв этим опасным токсикантом. [c.248]

    Показано, что при внесении ила происходит увеличение содержания ртути в червях, но зависимость между содержанием ртути в теле червей и копролитах и количеством внесенного ила не выражена [Helmke et al.,1979]. В то же время такая зависимость выявлена для кадмия, меди и цинка. Максимальное содержание ртути в теле червей составило 0,76 мг/кг сухого веса. Обзор работ по использованию химического состава дождевых червей для мониторинга степени загрязнения почвы приведен в сводке В. Бейера [Веуег, 1990]. Поскольку содержание ртути в теле червей совпадает с содержанием этого элемента в растительности (см. табл. 3.12) возможно предполагать накопление ртути червями по пищевой цепи. Но, по-видимому, в данной популяции вместе с поглощением идет и активная экскреция этого элемента. Нельзя исключить и видоспе-цифичности накопления ртути дождевыми червями. [c.140]

    Спектральные методы предложены для определения таллия в кадмии [69, 101, 173, 795], цинке [794, 814], свинце [275, 477, 499, 829], олове [232, 355], в сплавах [888], пирите [498], цинковой об.манке [467], силикатах [157, 819, 820], рудах [121, 255, 266, 642, 888], почве [670], воздухе [36] и других объектах [8, 86а, 111а, 156, 284, 285, 293, 473, 486, 497, 553, 556, 565, 648, 741, 776, 889]. [c.124]

    Методом атомпо-абсорбционной спектрофотометрии определяют Sb в различных материалах, в том числе в алюминии и его сплавах [954, 1469], геологических материалах, минеральном сырье и горных породах [97, 732, 863, 954, 1338, 1391, 1485, 1638], железных рудах, железе, чугуне, стали и ферросплавах [888, 954, 1069, 1140, 1141, 1601], меди и медных сплавах [1392, 1534, 1673], мышьяке и его сплавах [1534], никеле, никелевых сплавах и соединениях [954, 955, 1594], олове и его сплавах [1354], оловянносвинцовых припоях [1166], свинце, его сплавах и солях [267, 268, 1354, 1450], галенитах [1387], сплавах редких и цветных металлов [1140, 1321], полупроводниковых материалах [265, 1122], рудах [97, 1511, 1601, 1638], почвах [1391, 1594, 1638], силикатных материалах,. керамике и стеклах [652, 1587], чистых веш,ествах [315],. солях ш,елочных и ш,елочноземельных металлов [387], природных и сточных водах [1123, 1209, 1213, 1367], плутонии [1622], солях цинка и кадмия [387], синтетических волокнах [1321], пиш,евых продуктах [1367], пистолетных пулях [948], добавках к нефтепродуктам [1563], химических реактивах и препаратах [264—266, 268, 387]. [c.93]

    Локальные загрязнения биосферы. Зафязнение окружающей среды происходит весьма неравномерно. Основные очаги анфопогенного воздействия на природу расположены в регионах с развитой промыщ-ленностью, максимальной конценфацией населения и интенсивным сельскохозяйственным производством. Такие зафязнения, обычно наблюдающиеся вокруг какого-либо промышленного предприятия, крупного рудника, населенного пункта, называются локальными. Их химизм определяется, с одной стороны, отраслевой принадлежностью источника зафязнения, с другой — рельефом, климатическими особенностями и другими природными условиями места зафязнения. Так, почва вокруг рудников полиметаллических руд и комбинатов по выплавке цветных металлов всегда содержит повышенное количество тяжелых металлов — меди, цинка, свинца, кадмия. Такое же локальное зафязнение почвы свинцом наблюдается вдоль автострад с напряженным движением. [c.48]

    Первым этапом трансформации оксидов тяжелых металлов в почвах является взаимодействие их с почвенным раствором и его компонентами. Даже в такой простой системе, как вода, находящаяся в равновесии с СО2 атмосферного воздуха, оксиды тяжелых металлов подвергаются изменениям и существенно различаются по своей устойчивости. Оксид цинка — наиболее стабилен и менее растворим по сравнению с оксидами свинца и к iдмия. Его растворимость в диапазоне pH 4 —8 более чем в 100 раз ниже, чем растворимость РЬО, и почти в 10 ООО раз ниже Сс10. В отличие от оксида цинка оксиды свинца и кадмия неустойчивы в воде и преобразуются в гидроксид и (или) карбонат (гидроксокарбонат) свинца и карбонат кадмия. [c.94]

    В качестве способа рекультивации зафязненных почв можно рекомендовать внесение фосфорных удобрений, что позволяет восполнить недостаток фосфора, помимо основной задачи — снижения фитотоксичности тяжелых металлов. В этом случае необходим постоянный конфоль за содержанием фтора и кадмия, поскольку возможно вторичное зафязнение этими элементами. [c.302]

    Полярографические методы используют при определении хрома в алюминиевых сплавах [221], двуокиси титана [1063], арсе-ниде галлия [161], сульфате кадмия [375], вольфрамате натрия [214], триглицинсульфате [866], HNO3 особой чистоты [16], радиоактивных препаратах хрома [165], катализаторах [393], гальванических отходах [1014], нихромовых пленках [134], каучуке [898], кристаллах рубина [1049, п,ементе [170], стекле [770], сталях и сплавах [93, 428, 610, 852, 897], алите [496], рудах и продуктах их переработки [975], речных, морских и сточных водах [87, 682], воздухе [69, 195], почвах [87]. [c.59]

    Другой вариант метода концентрирования с использованием пирролидиндитиокарбамината натрия состоит в следующем [1365]. Почву обрабатывают смесью растворов фтористоводородной и хлорной кислот. Остаток растворяют в соляной кислоте. К раствору прибавляют 20 м.л 15%-ного раствора сульфосалициловой кислоты, нейтрализуют раствором гидроокиси аммония при рн 4,8, приливают 15 м.л 5%-ного раствора пирролидиндитиокарбамината натрия и экстрагируют три раза хлороформом. Из объединенных экстрактов удаляют хлороформ выпариванием и остаток используют для спектрального определения кобальта и других микроэлементов — серебра, меди, кадмия, цинка, галлия, индия, свинца, олова, ванадия, молибдена, никеля, железа, палладия. [c.213]

    ПНД Ф 16.1.4-96. Методика выполнения измерений массовой доли кадмия и свинца в почвах и почвенных вытяжках методом пламенной атомно-абсорбционной спекгрометрии после проточного сорбционного коцентрирования [c.955]

    РД 52.18.191-89 Методические указания. Методика выполнения измерений массовой доли кислоторас творимых форм металлов (медь, свинец, никель, кадмий) в пробах почвы атомно-абсорбционным анализом [c.956]

    ПНЛФ 16.14-97 Методика выполнения измерений массовой доли кадмия и свинца в пробах почв и почвенных вытяжек методом пламенной атомно-абсорбционной спектрометрии после проточного сорбционного концентрирования [c.957]

    По данным Научного комитета по действию атомной радиации (НКДАР), для большой части населения Земли самыми опасными источниками радиавдш являются не ядерная энергетика (добыча и переработка урана, работа АЭС, переработка использованных твэлов и др.), а естественные источники радиации природные радионуклиды и космические лучи. Естественная радиация связана с содержанием в грунте, почве и строительных материалах урана, тория, радия, радона и кадмия. [c.3]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Сточные воды горнометаллургических комбинатов, производств красителей, кадмий-никелевых аккумуляторов, минеральных удобрений и др. даже после специальной очистки содержат значительные количества К. При их попадании на поля К. задерживается в почве. Вблизи металлургических предприятий из-за оседания К. из атмосферы содержание его на поверхности почвы в 20—50 раз выше, чем на контрольны,х участках в воздухе крупных промышленных городов концентрации К. достигают 15 нг/м (Yost). Значительные количества К. в зонах загрязнения почвы определяются на глубине до 2,5 см на глубине 10—15 см содержание К. обычное. В почву К. поступает также с минеральными удобрениями (суперфосфат содержит 720,2 мкг К. в 100 г, фосфат калия — 471 мкг, селитры— до 66 мкг). Загрязнение воздуха и поверхности почвы вызывает К., содержащийся в выхлопных газах автомашин и тракторов. На 25—30 м по обе стороны магистралей на поверхности листьев растений обнаруживается в 2—3 раза больше К., чем в контрольных районах (Бериня и др.). Загрязнение почвы К- [c.162]

    При внесении осадков в почву как удобрения учитывают предельное содержание солей тяжелых металлов в самих почвах. Такие требования исключают вредное воздействие этих элементов при употреблении выращенных на этих почвах продуктов на людей, домашних и диких животных, а также птиц. Так, на земле Баден-Вюртенберг (ФРГ) руководствуются следующими нормами предельного содержания металлов в почве (мг/кг) меди—100, цинка — 300, кадмия — 2, никеля — 50, свинца — 100, хрома —100 и ртути — 2 [49]. [c.199]


Смотреть страницы где упоминается термин Кадмий в почве: [c.109]    [c.110]    [c.321]    [c.154]    [c.130]    [c.954]    [c.17]    [c.30]    [c.142]    [c.143]    [c.532]    [c.149]   
Санитарно химический анализ загрязняющих веществ в окружающей среде (1989) -- [ c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте