Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение природа

    Найдите поверхностное натяжение жидкости, если в капилляре с диаметром 2 мм она поднимается иа высоту 15 мм. Плотность жидкости 0,998 г/см , краевой угол мениска равен 0°. Сделайте предполо ке-ние о природе жидкости. [c.34]

    Определите равновесное давление паров над каплями воды и четыреххлористого углерода с дисперсностью 0,1 нм- при температуре 293 К. Давление насыщенных паров над плоской поверхностью при этой температуре для воды и четыреххлористого углерода составляет соответственно 23,38-10 и 13-10 Па плотность соответственно равна 0,998 и 1,593 г/см поверхностное натяжение 72,75 и 25,68 мДж/м . Обратите внимание, как влияет природа жидкости на давление насыщенных паров в дисперсной системе. [c.35]


    Цель работы определение зависимости поверхностного натяжения на границе ртуть — раствор и краевого угла от электрического потенциала исследование влияния природы электролита на точку нулевого заряда. [c.27]

    При движении двухфазных систем проявляются те силы, которые были рассмотрены при анализе гидродинамических явлений, протекающих в однофазных потоках. Однако наличие двух фаз изменяет не только формы движения таких систем, но и их природу, так как решающее влияние оказывает взаимодействие между фазами. В этих случаях невозможно описать режимы обычными для однофазных потоков такими понятиями, как ламинарный , или турбулентный , поток. В отличие от однофазных потоков на границе раздела двухфазных потоков проявляются принципиально новые силы — силы межфазного поверхностного натяжения. Эти силы производят работу образования поверхности жидкости на границе ее раздела. Работа, затрачиваемая на образование 1 см поверхности, называется поверхностным натяжением и соответственно имеет размерность [c.135]

    Влияние природы взаимодействующих компонентов иногда выражают через коэффициенты поверхностного натяжения о на границах Т—Ж, Ж—Т, Т—Т, а также угол смачивания 9с, выражающий степень лиофильности. Смачивание твердой поверхности носителя жидкостью (раствором) происходит при всех методах пропитки. Условия смачивания [32] могут быть определены энергетическими соотношениями в системе, т. е. величинами свободной энергии на межфазных поверхностях и соотношением между силами адгезии и когезии [81]. [c.132]

    Немаловажную роль играет также ультразвуковой капиллярный эффект. Явление капиллярности заключается в том, что при помещении в жидкость капилляра, смачиваемого жидкостью, под действием сил поверхностного натяжения в нем происходит подъем жидкости на некоторую высоту. Если жидкост ь в капилляре совершает колебания под влиянием источника ультразвука, то капиллярный эффект резко возрастает, высота столба жидкости увеличивается в несколько десятков раз. Экспериментально доказано, что в этом случае жидкость толкает вверх не радиационное давление и капиллярные силы, а стоячие ультразвуковые волны. Ультразвук сжимает столб жидкости и поднимает его вверх. Важно отметить, что природа УЗ-капиллярного эффекта не состоит в [c.25]

    Так как поверхностное натяжение целиком определяется природой разделяемой смеси, то при подборе материала насадки следует стремиться к тому, чтобы зависящий от природы материала краевой угол смачивания был как можно меньше. В табл. 5 [c.47]


    I Силы, возникающие в слое жидкости у поверхности толщиной менее радиуса сферы их действия, втягивают молекулы внутрь. Силы эти вызывают напряжение на поверхности. Зависит оно как от рода жидкости, так и от природы соседней с нею среды. В связи с этим рассматривают отдельно напряжение жидкости на границе с воздухом как поверхностное натяжение и на границе с другой жидкостью как межфазное натяжение [10, 116]. По закону Антонова [2], межфазное натяжение есть разность поверхностных натяжений. Непосредственные измерения показывают значительные отклонения от этого закона для ряда жидких систем [75]. Межфазное натяжение оказывает непосредственно подтвержденное в некоторых случаях влияние на интенсивность экстрагирования (спонтанная межфазная турбулентность). Кроме того, оно имеет большое влияние, на степень дробления, а значит, на величину поверхности соприкосновения фаз в экстракционных аппаратах, и на устойчивость эмульсии. [c.52]

    В расплавах природа связи имеет два вида — молекулярную и ионную. При молекулярной связи величина поверхностного натяжения составляет 0,2—0,3 Н/м. Для ионных расплавов величина поверхностного натяжения существенно выше — 1—2 Н/м для металлургических шлаков эта величина равна 2—4 Н/м. [c.82]

    Осажденные катализаторы [143, 145] получают соосаждением из раствора составных компонентов активной массы. В зависимости от природы получаемых осадков катализаторы делят на основные, кислотные и солевые. Для процессов в кипящем слое наибольшее применение из этой группы контактных масс нашли силикагели, алюмогели и алюмосиликаты, имеющие кислую поверхность и используемые в реакциях крекинга, алкилирования, полимеризации, изомеризации и т. д. В этом случае, при сливании исходных растворов образуется золь, быстро переходящий в гель. Гель способен при прохождении через слой органической жидкости (масла) коагулировать в частицы сферической формы. Получаются высокопрочные катализаторы, величина гранул и пористая структура которых определяется температурой, величиной поверхностного натяжения, вязкостью жидкости, используемой для грануляции, конструкций и размером гранулятора. Сферическая форма зерна способствует повышению его износоустойчивости. [c.128]

    Другое важное свойство жидкой фазы связано со смачиванием. Когда жидкая фаза находится в контакте с твердой фазой (например, со стенкой канала) и является смежной с другой фазой, которая также находится в контакте со стенкой, у стенки существует тройная граница раздела, и угол, образуемый у этой границы раздела границами раздела жидкость — газ и жидкость — твердое тело, известен как краевой угол. Краевой угол зависит от соответствующих энергий поверхностного натяжения (жидкость — текучая среда, текучая среда — твердое тело, жидкость — твердое тело), и для большинства систем он меньше 90 . Таким образом, жидкая фаза имеет тенденцию смачивать поверхность. Конечно, бывают исключения поверхность может быть специально обработана гидрофобизатором (как это делается при капельной конденсации) или краевой угол по своей природе может быть больше 90° (как, например, в случае соприкосновения ртути и поверхности стекла). Хотя жидкости вообще более сжимаемы, чем твердые тела, их сжимаемость такова, что на практике, как правило, ее можно не принимать в расчет. [c.176]

    Величина поверхностного натяжения данной жидкости зависит от ее природы (величины и строения молекул), свойств соприкасающейся с ней другой фазы и температуры (с повышением температуры величина поверхностного натяжения уменьшается). [c.111]

    Мицеллярные растворы по внешнему виду однородны, оптически прозрачны и имеют очень малую величину поверхностного натяжения на границе с водой. В зависимости от природы ПАВ и количества воды, входящей в состав мицеллярных растворов, вязкость последних может изменяться от единиц до десятков мПа-с. [c.168]

    Как уже указывалось, теория эмульсий и их устойчивости разработана хуже, чем теория пен. Одна из первых гипотез, распространявшаяся также и на природу устойчивости пен, состояла в том, что необходимым условием устойчивости эмульсии является достаточно низкое поверхностное натяжение на межфазной границе. Тогда избыток поверхностной энергии в дисперсной системе мал, и термодинамический фактор, стремящийся уменьшить энергию системы, т. е. ее общую поверхность или дисперсность, также невелик. Эти представления, объясняющие устойчивость дисперсных систем с точки зрения элементарной термодинамики, оказались совершенно неприемлемыми для теории пен, и поэтому в разделе пен они не рассматривались. В случае же эмульсий для их использования имеется больше оснований, поскольку поверхност- [c.243]


    Как зависит поверхностное натяжение от природы вещества, образующего поверхность (межмолекулярного взаимодействия)  [c.30]

    Первые исследователи свойств эмульсии считали, что поверхностное натяжение ст является очень важным фактором, определяющим стабильность и размер частиц. Приводились доводы, что большая величина а означает и большую энергию, затрачиваемую на образование новой поверхности и, следовательно, это неблагоприятствует образованию эмульсии. Поэтому стремились к уменьшению а тем или иным путем. Как установлено в настоящее время, работа, затрачиваемая на образование новой поверхности, представляет собой лишь часть общей энергии, потребляемой в процессе приготовления эмульсии. Несомненно, низкое значение поверхностного натяжения способствует диспергированию, но более важны те изменения, которые происходят в двойных электрических слоях , образующихся возле этих поверхностей. Двойной электрический слой обеспечивает устойчивость эмульсии, препятствуя коагуляции частиц, и показывает, будут ли образовываться эмульсии типа вода в масле (В/М) либо масло в воде (М/В). Изменение поверхностного натяжения — проявление тех изменений, которые происходят в природе самой поверхности. [c.19]

    Поверхностно-активные свойства ПАВ зависят от числа метиленовых групп в углеводородной цепи, природы и содержания полярных групп. Адсорбционная способность молекул ПАВ характеризуется поверхностной активностью g. Поверхностную активность можно найти графически по экспериментальной изотерме поверхностного натяжения a = f( ). На рис. 10 представлены изотермы поверхностного натяжения для соседних членов гомологического ряда ПАВ. Приведенные кривые показывают, что с удлинением углеводородного радикала гомолога поверхностная активность g повышается. [c.43]

    Межфазовое натяжение и адгезия. Существование поверхност предполагает наличие двух сред, например, жидкости и воздуха. Поверхностное натяжение зависит от природы этих двух сред. Ра- [c.59]

    Одной из работ, в которых впервые были высказаны основные положения о природе адсорбционных сил, являются исследования Л. Г. Гурвича [58]. В этих исследованиях Л. Г. Гурвич пришел к выводу об особом физико-химическом характере сил взаимодействия адсорбента и адсорбционного вещества. Он установил соответствие между адсорбируемостью ряда соединений и возникающей при этом теплотой смачивания, а также такими свойствами адсорбируемых веществ, как поверхностное натяжение, растворимость и др. [c.234]

    Величина поверхности контакта фаз зависит главным образом от природы взаимодействующих фаз (разности их плотностей, величины поверхностного натяжения на границе раздела фаз) и типа и конструкции аппарата, используемого для контактирования. [c.304]

    В основе первого положения Лэнгмюра [11] лежат многочисленные работы по образованию жидких пленок на поверхности воды. Ранее было установлено, что оливковое масло растекается по поверхности воды до тех пор, пока не образуется мономолекулярный слой его, причем поверхностное натяжение воды падает до 21 дн/см . Эти опыты были затем продолжены различными исследователями. Изучение образования, природы и структуры таких пленок на поверхности жидкости способствовало пониманию гетерогенного катализа. [c.96]

    В неводных растворителях соли также повышают поверхностное натяжение, причем величина этого эффекта зависит от природы растворителя. Так, в гомологическом ряду спиртов способность повышать поверхностное натяжение быстро падает с увеличением молекулярного веса растворителя. В этиловом спирте эта способность вдвое меньше, чем в метиловом, а в амиловом она совсем незначительна. Объяснение этому явлению. следует, по-видимому, искать во влиянии силового поля молекул растворенной соли на молекулы поверхностного слоя. Такое влияние обратно пропорционально толщине углеводородной части молекул растворителя, образующих поверхностный слой. Экранирующее действие мономолекулярного слоя метилового спирта невелико, тогда как в молекуле амилового спирта четыре группы СНа образуют такой плотный экран, что молекулы соли уже слабо влияют на свойства поверхностного слоя. [c.32]

    Величина поверхностного натяжения имеет значение в процессе образования и разрушения эмульсий. Она зависит от ряда факторов, важнейшими из которых являются природа жидкости, природа тел, сонриЕасаюпщхся с этой жидкостью, а также температура. Кроме ртути, наибольшим поверхностным натяжением обладает вода (з = 73,1). Растворение в жидкости различных тел заметно изменяет ее поверхностное натяжение — факт, ши-130К0 используемый в нефтяной технике для разрушения эмульсий, когда дело сводится именно к изменению поверхностного натяжения. [c.271]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Результаты пламеннофотометрических определений зависят от множества факторов различной природы, изменение которых может приводить к существенным погрешностям. По механизму влияния их можно разделить на три группы I) вязкость, поверхностное натяжение и температура анализируемого раствора 2) ионизацля атомов, самопоглощение резонансного излучения в пламени невозбужденными атомами элемента, образова- [c.37]

    Величина поверхностного натяжения топлива зависит от его химического состава и прежде всего от количества находящихся в нем поверхностно-активных веществ. Чем выше содержание полярных компонентов (смол, асфальтенов и др.), тем больше поверхностное натяжение (в воздухе). На границе раздела с водой имеет место обратная зависимость. Таким образом, величина поверхностного натяжения может быть показателем химической природы топлива и степени его очистки. Хорошо очищенные дизельные топлива алканового основания будут иметь минимальные величины поверхностного натяжения и лучшее распыливание. При расчете топливораспыливающей аппаратуры (форсунки, карбюраторы) необходимо знать поверхностное натяжение топлива на границе с воздухом. В этом случае определение поверхностного натяжения производится путем измерения давления, необходимого для того, чтобы продавить пузырек воздуха через отверстие капилляра радиуса г в исследуемое топливо. Это давление будет равно [c.62]

    Одним из важнейших молекулярно-поверхностных свойств является поверхностное натяжение на границе фаз. Исследуя ряд нефтей, Л. Г. Гурвич [16] установил, что на границе с воздухом влияние поверхностно-активных компонентов нефти проявляется слабо. Значительно более резко проявляются свойства полярных компонентов, в большей степени отражающих их природу, на значениях поверхностного натяжения нефти и нефтепродуктов иа границе раздела их с водой. Было показано [16], что нефтяная смола уже в концентрации 0,1% сильно понижает поверхностное натяжение нефтепродуктов на границе раздела с водой в случае бензина — на 12,6, керосина — на 3,8, веретенного масла — на 2,0 эрг см . П. А. Ребиндер показал, что различия в молекулярноповерхностных свойствах вообще проявляются наиболее отчетливо при измерении поверхностного натяжения на границе раздела фаз. имеющих самую высокую разность полярностей. Граница раздела нефтепродукт/вода является частным случаем этого более общего правила и, надо сказать, наиболее изученной областью, отвечающей практическим интересам. [c.191]

    Поверхностное натяжение. Знать новерхирстное натяжение на границе битума с газом (воздухом) необходимо нри изучетгн гидродинамики барботажного процесса окисления сырья в реакторе. Поверхностное натян еиие на границе битума с воздухом зависит от наличия п битуме поверхностно-активных веществ (кислородсодержащих функциональных групп), что определяется природой сырья и глубиной окисления. С повышением температуры оно понижается 25—28 кН/м (дин/см) при 150 °С, 32,1—34,4 кН/м (дин/см) при 25 ""С. [c.284]

    Физическая природа электризации тел трением до сих пор полностью не ясна. В соответствии с современными представлениями трение обеспечивает более тесное соприкосновение различных точек поверхностей тел, облегчая переход носителей электрических зарядов от одного контактируюшего тела к другому в случае различной концентрации в них носителей зарядов. Кроме этого, как указывал Я. И. Френкель, при трении происходит локальный рост температуры из-за абразивного процесса и снижения поверхностного натяжения. За счет этого выделяется большое количество энергии. Локальный рост температуры в местах контакта может оказаться достаточным для появления некоторого количества свободных носителей, переход которых и создает заряды. Электризация происходит и в результате трения тел из одного материала. При этом тело, нагретое до более высокой температуры, заряжается положительно. [c.127]

    Мономолекулярная природа поверхностных пленок. Поверхностное давление [1—4]. Нерастворимое и нелетучее вещество, помещенное в небольшом количестве на поверхность жидкости с большим поверхностным натяжением (например воды), может оставаться в виде нерастекающейся капли, либо растекаться по поверхности. Необходимое и достаточное условие растекания вещества — более сильное притяжение его молекул к растворителю (воде), чем друг к другу. Иными словами, работа адгезии между веш,еством и жидкостью в этом случае превышает работу когезии самого вещества. Если это условие соблюдено, то молекулы растекающегося вещества стремятся прийти в непосредственное соприкосновение с жидкостью, обычно называемой подкладкой . Если позволяет площадь подкладки, растекающаяся жидкость образует мономолекулярный слой. Особое состояние вещества в этих пленках представляет большой интерес. [c.51]

    Как правило, дисперсные системы не монодиснерсны. Частицы распределены но размера.м по определенному закону. Если известны дополнительные сведения о структуре частиц дисперсной фазы (например, поверхностное натяжение на границе раздела фаз), то формула Левпшна — Перрена может применяться для определения оставшихся неизвестных параметров. Обобщение формулы Левшнпа — Перрена для полидисперсных систем приведено в [138]. Преимуществом метода поляризованной люминесценции является то, что о)1 позволяет наблюдать начальную стадию ассоцпации молекул и образования дисперсий. Однако он не работает, если частицы достаточно велики. Кроме того, метод селективен к природе молекул, поскольку каждое вещество обладает своим спектром люминесценции. Верхняя граница определения размеров составляет 10 нм. [c.98]

    Поверхностная активность, как и гиббсовская адсорбция, может быть положительной и отрицательной. Абсолютное зпачеине и знак ее зависят от природы как адсорбируемого вещества, так и среды (растворителя). Если с увеличением концентрации вещества поверхностное натяжение на границе раздела фаз понижается, то такое вещество называют поверхностно-активным. Для таких веществ [c.40]

    При наличии в растворе поверхностно-активных веществ форма электрокапиллярной кривой может существенно измениться, так как адсорбция ПАВ вызывает дополнительное изменение поверхностного натяжения (кроме действия электрического потенциала). Влияние ПАВ иа электрокапиллярпую кривую зависит от природы этих веществ и их концентрации. Адсорбция на межфазной поверхности зависит также от электрического потенциала, который в соответствии с уравнением Липпмана определяет поверхностное патяжение. [c.52]

    Таким образом, смачивающая способность жидкостей и адгезионное взаимодействие их с твердыми телами в основном определяются природой веществ, составляющих контактирующие фазы. Сопоставление уравнений (Т 12) и (I. 14) показывает, что высокая адгезия между фазами может реализоваться лишь прн определенном соотношении значений Стт-г и сГж-г (сгт-г > сГж-г)- Решзющее значение при этом играет состояние поверхности твердого тела и его поверхностное натяжение. [c.21]

    Сущность работы. Знание зависимости поверхностного натяжения на границе раствор — металл от приложенного напряжения иоз воляет судить о строении двойного электрического слоя. Для исследования применяют метод электрокапиллярных кривых. Ето сущность состоит в постепенной поляризации ртутного катода и измерении поверхностного натяжения на границе раствор — ртуть. При катодной иоляризации ртути ее положительный заряд постепенно уменьшается, а поверхностное натяжение возрастает. При заряде, равном нулю, иоверхностное натяжение достигает максимума. Форма получаемой электрокапилляр-ной кривой и потенциал нулевого заряда, при котором поверхностное натяжение достигает максимальното значения, определяется составом раствора, наличием в нем поверхностно-активных веществ и, следовательно, природой и строением двойного электрического слоя. [c.184]


Смотреть страницы где упоминается термин Поверхностное натяжение природа: [c.73]    [c.45]    [c.321]    [c.196]    [c.311]    [c.20]    [c.442]    [c.12]    [c.51]    [c.273]    [c.374]    [c.10]    [c.380]    [c.7]    [c.99]    [c.156]   
Химия коллоидных и аморфных веществ (1948) -- [ c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте