Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилаза и глюкагоном

    Более важную роль в регуляции играют, однако, факторы, определяемые стимулирующим действием гормонов и нервной системы. Если концентрация адреналина в крови повышается, то этот гормон начинает связываться с рецепторами на поверхности клеточных мембран, активируя образование циклического АМР (гл. 7, разд. Д, 8). Аналогично в печени рецепторы глюкагона связывают этот гормон и стимулируют образование циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, которые модифицируют различные белки, в том числе киназу фосфорилазы (Ei на рис. 11-10), а также гликоген-синтетазу. В покоящейся мышце киназа фосфорилазы находится в неактивной форме, и фосфорилирование протеинкиназой переводит ее в [c.507]


    Биохимические функции. Глюкагон является гормоном-антагонистом инсулина. Он стимулирует гликогенолиз и липолиз, а также активирует процесс глюконеогенеза. Глюкагон взаимодействует с клетками-мишенями по мембрано-опосредованному механизму (гл. 11). Через вторичный посредник — цАМФ он активирует протеинкиназу, киназу фосфорилазу и фосфорилазу Ь, что приводит к мобилизации глюкозы из гликогена. Как и инсулин, глюкагон регулирует метаболические процессы преимущественно в печени, мышцах и жировой ткани. [c.167]

    Глюкагон вызывает увеличение концентрации сахара в крови и стимулирует распад гликогена. Объясняется это тем, что глюкагон, как и адреналин, превращает неактивную фосфорилазу печени в активную (стр. 251). [c.189]

    Глюкагон и эпинефрин вызывают усиленный распад гликогена, и эти же вешества оказывают активирующее действие на фосфорилазу. [c.101]

    Глюкагон обладает способностью стимулировать расщепление гликогена в печени, повышая тем самым уровень сахара в крови. Этот эффект зависит от уровня гликогена и состоит в активации фосфорилазы в печени (и сердце) [1783]. В отличие от адреналина глюкагон не активирует фосфорилазу скелетных мышц. Гипогликемия, возникающая под действием инсулина, ведет к усиленному расщеплению гликогена в печени, которое стимулируется глюкагоном. В механизме гомеостаза глюкозы глюкагон является антагонистом инсулина. Показан также синергизм действия глюкагона и инсулина при освобождении глюкозы из гликогена. Присутствие инсулин стимулирует утилизацию свободной глюкозы в периферических тканях. Уровень глюкагона в плазме равен приблизительно 50 мкг%. Глюкагон вырабатывается в а-клетках островков Лангерганса и содержится в ряде других тканей. Глюкагон снижает перистальтику же- [c.330]

    РОЛЬ ГЛЮКАГОНА. Расщепляясь до глюкозы, гликоген препятствует падению уровня глюкозы в крови ниже 60 мг%. Процесс расщепления гликогена называется гликогенолизом и включает активацию фермента фосфорилазы гормоном глюкагоном. Глюкагон тоже вырабатывается поджелудочной железой и выделяется в ответ на недостаток сахара в крови (разд. 17.6.6). В момент опасности, при стрессе или в условиях холода фосфорилазу активируют также адреналин, выделяемый мозговым веществом надпочечников, и норадреналином, высвобождаемый также мозговым веществом надпочечников и окончаниями симпатических нейронов (разд. 17.6.5)  [c.425]

    Открытие циклических нуклеотидов, а затем установление механизмов их участия в передаче сигнала снаружи клетки на внутриклеточные структуры было сделано Сазерлендом при изучении процесса регуляции адреналином и глюкагоном гликогенфосфорилазы в печени. На рис. 16 показана последовательность реакций, приводящих к переходу этого фермента из низкоактивной формы фосфорилазы Ъ в активную форму — фосфорилазу а. Гормон взаимодействует со специфическим рецептором на наружной поверхности клетки. Сигнал об этом взаимодействии передается на внутреннюю [c.44]


    Избыточное выделение глюкагона поджелудочной железой или искусственное введение его в организм животных и человека приводит к кратковременному повышению содержания глюкозы в крови—гипергликемии. Это действие глюкагона объясняется тем, что он способствует превращению менее активной формы фосфорилазы печени в более активную (см. с. 334). В результате под действием фосфорилазы а усиливается распад гликогена в печени и возрастает содержание глюкозы (в виде глюкозо-1-фосфата) в крови. Естественно, что запасы гликогена в печени при этом сокращаются, а процесс гликогенолиза в организме усиливается. Таким образом, глюкагон способствует деструкции углеводов. [c.450]

    Далее приступили к анализу активации фосфорилазы гормонами в препарате разрушенных клеток печени. Поразительным образом добавление адреналина и глюкагона приводило, как и в опытах со срезами [c.283]

    В 1956 г. Э. Сазерленд установил, что сАМР — это соединение, опосредующее действие гормонов адреналина и глюкагона на гликогенфос-форилазу. На протяжении многих лет большинство биохимиков смотрели на сАМР как на некую диковинку, а иа химический механизм регуляции фосфорилазы — как на нечто исключительное. В последнее время, однако, взгляды на этот вопрос резко изменились, поскольку было показано, что сАМР опосредует действие более чем двадцати различных гормонов. Циклический АМР опосредует также, по-видимому, действие нейромедиатор ов, высвобождающихся в синапсах. Даже Е. oli продуцирует сАМР, который действует как положительный эффектор при инициации транскрипции определенных генов (гл. 15, разд. Б, 2). В 1971 г. Сазерленду была присуждеиа Нобелевская премия за успешное раЗ Витие этой области исследований [74, 75]. [c.71]

    В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток , образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-- 1-фосфата (см. главу 10), в то время как фосфорилирование гликогенсинтазы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови. [c.272]

    Активная форма последней образуется при участии цАМФ, которая в свою очередь образуется из АТФ под действием фермента аденилатциклазы, стимулируемой, в частности, адреналином и глюкагоном. Увеличение содержания адреналина в крови приводит в этой сложной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом фосфатазой (эта реакция практически необратима). [c.326]

    Катализируется эта реакция ферментом киназой фосфорютазы Ь, который также существует как в активной, так и неактивной формах. Активация киназы фосфорилазы Ь происходит подобно активации фосфорилазы, т. е. путем ее фосфорилирования, которое катализируется цАМФ-зависимой протеинкиназой (гл. 13). Важная роль в активации киназы фосфорилазы принадлежит также Са " -кальмодулину — белку, участвующему в регуляции активности многих киназ (гл. 13). Активация протеинкиназы при участии цАМФ, который, в свою очередь, образуется из АТФ в реакции катализируемой аденилатциклазой, стимулируется гормонами адреналином и глюкагоном. Увеличение содержания этих гормонов приводит в результате каскадной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом протеинфосфатазой. На рис. 18.6 приведен каскадный механизм мобилизации гликогена. Активация первого фрагмента каскада — аденилатциклазы — в конечном счете активирует распад гликогена и одновременно ингибирует фермент его синтеза — гликогенсинтазу (гл. 20). Следовательно, фосфорилирование гликогенфосфорилазы и гликогенсинтазы приводит к противоположным изменениям их активности гликогенсинтаза ингибируется, а гликогенфосфорилаза активируется, что вызывает повышение содержания глюкозы в мышцах, печени и крови, т. е. происходит быстрое включение реакций, поставляющих энергию. [c.251]

    Е. Адреналин стимулирует аденилциклазу, с помощью которой из АТФ образуется циклический АМФ, и затем циклический АМФ активирует киназу, превращающую неактивную фосфорилазу Ь в активную фосфорилазу а (стр. 62). Ж. Активная глнкогенсинтетаза Ь (так называемая а ) превращается в менее] активную форму О (так называемая ) под действием киназы, стимулируемой циклическим АМФ. Действие адреналина или глюкагона сводится, таким образом, к подавлению синтеза или ускорению распада гликогена (стр. 62). [c.87]


    Можно, таким образом, считать, что образование активной фосфорилазы связано-с фосфорилировапием неактивной формы фермента. Циклическая форма АМФ образуется из АТФ при участии специальной ферментной системы ( циклазы ). Гормоны адреналин и глюкагон, активируя циклазу , резко ускоряют фосфоролиз гликогена. [c.266]

    Процесс активации и инактивации фосфорилазы подробно показан на рис. 1. Циклофосфат образуется из АТФ в частицах, выделенных из печени, сердца, скелетной мышцы и мозга (Сатерленд и Ролл [50]). Это превращение во всех тканях (за исключением мозга) стимулируется адреналином и некоторыми другими симпатомиметиками. Стимуляция адреналином не является уникальной, поскольку адренокортикотропный гормон гипофиза и глюкагон также увеличивают образование циклофосфата соответственно в корковом веществе надпочечников и в печени [51]. Наоборот, 5-ОТ усиливает как ритмические движения, так и активность фосфорилазы у печеночной двуустки Fas iola hepati a, тогда как адреналин в обоих случаях влияния не оказывает (Мансо [52]). [c.365]

    Фосфорилаза, расщепляющая гликоген, и гликогенсинтетаза, его синтезирующая, — два главных фермента, непосредственно определяющие распад и синтез гликогена. Тонкая регулировка активности этих ферментов осуществляется взаимными переходами двух форм каждого фермента, что зависит от ряда факторов, частично уже рассмотренных. Однако помимо этого на обмен гликогена действуют многие гормоны, нейрогенные факторы и т. д. Среди гормонов необходимо назвать прежде всего адреналин (гормон мозгового слоя надпочечников), инсулин и глюкагон (образующиеся в поджелудочной железе), а также гормон роста (в передней доле гипофиза), кортикостероиды (из коры надпочечников). [c.202]

    В настоящее время многие исследователи считают, что фосфорилаза в животном организме играет значительно большую роль в процессах распада, чем в процессах синтеза полисахаридов. Основанием для такого суждения [31 явился тот факт, что в живых тканях не создается условий для синтезирующего действия фосфорилазы, так как необходимым фактором для сдвига фосфоролиза в сторону синтеза является низкий показатель отношения ортофосфата к Г-1-Ф. Между тем в живых тканях наблюдается обратное соотношение, ортофосфат всегда превалирует над Г-1-Ф. С другой стороны, было показано, что активирование процесса гликогенолиза эпине-фрином, глюкагоном и другими веществами происходит вследствие [c.74]

    Мобилизацию гликогена инициирует гликогенфосфорнлаза— типичный регуляторный фермент. По своему стратегическому положению этот фер.мент расположен между гликогеном и метаболическим аппаратом, необходимым для его расщепления, и находится под контролем различных гормонов, понов и метаболитов. Активация глиногенфосфорилазы (рис. 11) может происходить под действием гор.монов (адреналина-, норадреналина, глюкагона) и других агентов, а также под действием ионов Са +. В обоих случаях из неактивного димера (фосфорилазы Ь) образуется активный тетрамер — фосфорилаза а. [c.46]

    Схема мобилизации гликогена. Гормоны глюкагон (в печени) и адреналин стимулируют аденилатциклазу. В результате в цитозоле увеличивается концентрация цАМФ цАМФ активирует протеинки-назу. Протеинкиназа фосфорилирует за счет АТФ белки-ферменты, в частности второй фермент из класса протеинкиназ — киназу фосфорилазы. Киназа фосфорилазы из неактивной дефосфорилирован-ной формы переходит в активную фосфорилированную. Активная киназа фосфорилазы за счет АТФ переводит фосфорилазу Ь (неактивная) в фосфррилазу а, которая катализирует фосфоролитическое расщепление гликогена. Параллельно протеинкиназа фосфорилирует гликогенсинтазу I, переводя ее в неактивную гликогенсинтазу О, т.е. тормозится синтез гликогена. Каскадный механизм позволяет 1 молекуле гормона привести к образованию 10 -10 молекул глюкозы. [c.183]

    Связывание глюкагона с рецепторами на мембране клеток печени активирует аденилатциклазу и ведет к образованию цАМФ. Действие глюкагона сходно с действием адреналина в обоих случаях цАМФ акгивирует ферменты фосфорилазы, которые катализируют расщепление гликогена до глюкозы (см. рис. 17.48). В мышцах глюкагон не запускает этот процесс. Регуляция его выделения как и вьщеления инсулина основана на механизме отрицательной обратной связи, только реагируют не 3-, а а-клетки и не на повышение уровня глюкозы, а на его понижение. [c.349]

    Глюкагон вырабатывается в А-клетках островков Лангер-ганса. Он стимулирует расщепление гликогена в печени, повышая уровень сахара в крови, вызывает гипергликемню. Глюкагон является синергистом инсулина и обусловливает быстрое использование глюкозы на периферии. Он также стимулирует действие фосфорилазы, превращая неактивную форму фермента в активную  [c.201]

    К специфическому рецептору, находящемуся в этой же мембране. Образующийся сАМР взаимодействует с неактивной протеинкиназой, стимулирует ее диссоциацию и отделение от нее ингибиторной регуляторной субъединицы (R), освобождая активную каталитическую единицу (С), которая способна фос-форилировать ряд различных белковых субстратов. Одним из них является киназа фосфорилазы (PhK), которая после активации фосфорилированием фосфорилирует фермент гликоген-фосфорилазу (GP). С помощью такой цепи реакций глюкагон и адреналин стимулируют образование глюкозо-1-фосфата. Каскад, состоящий из четырех катализируемых ферментами этапов, существенно усиливает сигнал, так что очень небольшое число молекул гормона может привести к утилизации большого количества сахара. Молярное отношение трех ферментов — протеинкиназы, киназы фосфорилазы и фосфорилазы — в мышцах составляет приблизительно 1 20 120, что находится в соответствии с концепцией усиления сигнала. [c.124]

    Печень — основная мишень глюкагона. Связываясь со своими рецепторами на плазматической мембране гепатоцитов, глюкагон активирует аденилатциклазу. Генерируемый при этом сАМР в свою очередь активирует фосфорилазу, которая ускоряет распад гликогена, а одновременное ингибирование гликогенсинтазы тормозит образование последнего (см. гл. 44). Для этого эффекта характерна и гормональная, и тканевая специфичность глюкагон не влияет на гликогенолиз в мышце, а адреналин активен и в мышцах, и в печени. [c.264]

    В мышце фосфорилаза активируется адреналином (рис. 19.5). Однако он оказывает не прямой эффект, а действует опосредованно через сАМР (3, 5 циклоадениловую кислоту циклический АМР) (рис. 19.6 и гл. 44). сАМР представляет собой внутриклеточный интермедиат, выступающий в роли второго посредника при действии ряда гормонов. Он образуется из АТР при действии фермента аденилат-циклазы, находящейся на внутренней поверхности клеточной мембраны. Аденилатциклаза активируется (опосредованно) гормонами адреналином и но-радреналином—лигандами Р-адренергических рецепторов, локализованных в клеточной мембране в печени она активируется глюкагоном, действующим [c.192]

    Установлено, что при стимуляции гликогенолиза катехоламинами в печени в качестве главных посредников выступают а,-рецепторы. При этом происходит сАМР-независимая мобилизация ионов Са-+ и переход их из митохондрий в цитозоль, где они стимулируют Са /калыиодулипчувствнтельную киназу фосфорилазы. Фосфорилаза скелетных мышц в отличие от фосфорилазы печени не активируется глюкагоном. Отметим, что фосфорилаза сердечной мышцы активируется этим гормоном. Другим важным отличием является ингибирование печеночной протеинфосфатазы-1 активной формой фосфорилазы. [c.193]

    Глюкагон является гормоном, секретируемым А-клетками островков Лангерганса в поджелудочной железе (его секреция стимулируется гипогликемией). Когда по воротной вене глюкагон поступает в печень, он, подобно адреналину, активирует фосфорилазу и вызывает гликогенолиз. Большая часть эндогенного глюкагона задерживается в печени. В отличие от адреналина глюкагон не влияет на фосфорилазу мышц. Этот гормон усиливает также глюконеогенез из аминокислот и лактата. Гипергликемическяя эффект глюкагона обусловлен как гликогенолизом, так и глюконеогенезом в печени. [c.223]

    Существование раздельных путей для синтеза и распада гликогена означает, что эти процессы должны подчиняться строгой регуляции. Полное проявление активности обеих групп реакций в одно и то же время привело бы к непроизводительному гидролизу АТР. В действительности синтез и расщепление гликогена координированно регулируются таким образом, что глыко-ген-синтаза оказывается почти неактивной при полной активности фосфорилазы и наоборот, На обмен гликогена большое влияние оказывают специфические гормоны. По-липептидный гормон инсулин (разд, 2,6) повышает способность печени синтезировать гликоген. Механизм действия инсулина пока не раскрыт. Высокое содержание инсулина в крови говорит о состоянии сытости, тогда как его низкое содержание является сигналом голода (разд. 23,6), Значительно лучше изучен механизм действия адреналина и глюкагона, эффект которых противоположен эффекту инсулина. Мышечная активность или подготовка к ней приводит к высвобождению адреналина мозговым веществом надпочечников, Адре-  [c.122]

    Адреналин и глюкагон не проникают в свои клетки-мишени. Они связываются с плазматическими мембранами и стимулируют аденилатциклазу (разд. 35.3). Повышенное внутриклеточное содержание циклического АМР запускает ряд реакций, приводящих к активации фосфорилазы и ингибированию гликоген-синтазы. Мы рассмотрим теперь структурную основу регуляции активности указанных ключевых ферментов обмена гликогена и затем перейдем к каскаду реакций, устанавливающих связь между этими ферментами и циклическим АМР. [c.123]

    Синтез и расщепление гликогена находятся под координированным контролем амплифицирующего каскада реакций. Гликоген-синтаза неактивна, когда активна фосфорилаза, и наоборот. Адреналин и глюкагон стимулируют распад гликогена и ингибируют его синтез путем повышения внутриклеточного содержания циклического АМР, который активирует протеинкина-зу. Далее происходит фосфорилирование гликоген-синтазы, приводящее к ее инактивации. Фосфорилаза также подвергается фосфорилированию, но в этом случае фермент превращается в более активную форму. Фосфорильные группы обоих ферментов могут быть удалены при действии одной и той же фосфатазы. Гликоген-син- [c.135]

    Содержание глюкозы в крови начинает снижаться через несколько часов после еды, что вызывает снижение секреции инсулина и повышение секреции глюкагона. Описанные выше процессы протекают в обратном направлении. Активация каскада реакций, опосредуемых с АМР, приводит к повышению концентрации фосфорилазы а и понижению концентрации гликоген-синтазы а. Действие гормонов на этот каскадный механизм усиливается пониженным связыванием глюкозы с фосфорилазой а, что делает ее менее чувствительной к гидролитическому действию фосфатазы. Вместо этого фосфатаза остается связанной с фосфорилазой а, так что гликоген-синтаза остается в неактивной фосфорилированной форме. Так осуществляется быстрая мобилизация гликогена. Большое количество глюкозы, которое образуется при гидролизе глюкозо-6-фосфата после расщепления [c.293]

    На начальном этапе работы он стремился выявить ту ферментативную реакцию в процессе превращения гликогена в глюкозу, которую усиливали эти гормоны. Для этого срезы печени инкубировали в присутствии и определяли, в какие промежуточные соединения включалась метка. Оказалось, что ферментом, лимитирующим скорость процесса расщепления гликогена, бьша фосфорилаза, а не фосфо-глюкомутаза или глюкозо-6-фосфатаза. Более того, адреналин и глюкагон увеличивали активность фосфорилазы. Однако механизм активации был неясен. Далее Сазерленд обнаружил фермент, катализировавший инактивацию активной фосфорилазы. Этот инактивирующий фермент оказался фосфатазой напрашивалось предположение, что активация фосфорилазы обусловлена ее фосфорилированием. Действительно, при инкубации срезов печени с обнаружилось, что скорость включения [c.282]


Смотреть страницы где упоминается термин Фосфорилаза и глюкагоном: [c.274]    [c.293]    [c.809]    [c.62]    [c.150]    [c.331]    [c.83]    [c.346]    [c.146]    [c.291]    [c.293]    [c.283]    [c.284]    [c.301]   
Биохимия растений (1968) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Глюкагон влияние на фосфорилазу



© 2025 chem21.info Реклама на сайте