Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация приближенное

    Температура кипения разбавленных растворов. Если рассматривать растворы нелетучего вещества в летучих растворителях, то температуры кипения таких растворов всегда выше температуры кипения чистого растворителя при том же давлении. Повышение температуры кипения будет в общем тем большим, чем выше концентрация раствора, и для разбавленных растворов его можно считать пропорциональным концентрации. Приближен- [c.302]


    Уравнение (ХП,21) аналогично уравнению теплопроводности (IX, 1). Движущей силой процесса молекулярной диффузии является градиент концентраций с1С/с1п. Средняя величина градиента концентраций приближенно равна [c.221]

    Полное описание состояния смеси включает определение размеров, формы, ориентации и пространственного положения каждой частицы, ассоциата или капли диспергируемой фазы. В определенных случаях (например, для смесей с одинаковыми размерами частиц диспергируемой фазы) пространственное положение каждой частицы полностью характеризует состояние смеси. Предложенная Бергеном и др. [4] трехразмерная функция распределения концентрации приближенно описывает состояние смеси. Однако во многих случаях нет необходимости в полном описании смеси. На практике часто бывает достаточно использование простых методов. Наиболее распространена визуальная качественная оценка гомогенности смеси путем сравнения ее окраски с эталоном или оценка некоторых характерных физических свойств. Выбор того или иного метода оценки основан на знании природы компонентов и назначения смеси. [c.185]

    Определить концентрацию приближенно приготовленного 4 н. раствора кислоты, затем измерить в калориметре теплоту разбавления ее. Для этого в ампулу с палочкой, заранее взвешенную, ввести около 15 мл этой кислоты. Навеску кислоты 1 определить по разности масс ампулы с кислотой и без нее. Рассчитать объем V кислоты из 1 и ее плотности. В калориметрический сосуд налить 350 мл дистиллированной воды, собрать калориметр (см. рис. 8), помещая ампулу в соответствующее отверстие крышки. Наблюдать за изменением температуры так же, как и при определении растворения соли (работа 8). В момент 11-го отсчета ампулу разбить острием стеклянной палочки и определить при непрерывном поме- [c.40]

    Для предельных концентрации приближенное соотношение становится строгим. Этот достаточно простой вывод подтверждает требование о необходимости больного сродства (вплоть до химического взаимодействия) эффективного разделяющего агента к микропримеси по сравнению с очищаемым веществом. Влияние концентрации разделяющего агента представлено здесь в неявном виде. [c.259]

    Градуировочные коэффициенты К определяют по смеси, аттестованной по процедуре приготовления. Аттестованная смесь содержит растворитель, компоненты анализируемой пробы и вещество, принимаемое за внутренний стандарт, в концентрациях, приближенно соответствующих их содержанию в анализируемой пробе. Необходимым условием является наличие НТД на каждый компонент смеси. Если идентифицированные компоненты труднодоступны или на них отсутствует НТД, то допускается подготовка смеси на основе их аналогов или изомеров. [c.408]


    Уравнение Киреева [46]. В растворах ацетон—эфир, иодистый этил—гептан и ряде других зависимость к, от концентрации приближенно может быть принята линейной. Основываясь на этом, В. А. Киреев предложил следующее эмпирическое уравнение  [c.306]

    Ингибирующая стойкость характеризует отрицательный эффект избытка ингибитора и возможность внесения его избытка в защищаемую среду для обеспечения ее длительной стабильности. Ингибирующая стойкость описывается параметром, характеризующимся наклоном кривой зависимости скорости окисления от концентрации активного начала ингибитора (или его молярной концентрации). Приближенно [c.503]

    Напомним, что соотношение (13.1) относится к скалярной модели и может быть использовано в линейном по концентрации приближении. [c.225]

    Если ограничиться линейным по концентрации приближением, то соотношение (13,7) можно представить равенством  [c.226]

    Максимальная ошибка (почти вдвое) появляется тогда, когда С = 8. Для более низких концентраций приближенный результат совпадает с результатом, найденным для чистой воды. [c.158]

    Напротив, изоэлектрическое значение pH не зависит от концентрации белка, поскольку уравнение (30-1) не зависит от концентрации. Приближенные расчеты предыдущих разделов были основаны именно на этом предположении. На практике оно подтверждается не всегда в связи с электростатическим взаимодействием между ионами белка. [c.635]

    Для установления концентрации приближенно приготовленного и стабилизированного раствора тиосульфата применили следующую схему анализа Си —> Си 2Си - -4Г—> [c.83]

    Теплоту образования серной кислоты различной концентрации из 1 кг 50з, т. е. количество тепла, выделяющееся при добавлении к 1 кг 50з воды с образованием серной кислоты заданной концентрации, приближенно определяют по эмпириче- [c.20]

    В области переменной концентрации приближенно применимы все формулы (1.80) — (1.93), выведенные для случая неподвижного электролита. В диффузионном слое скорость жидкости отлична от нуля. Однако, как и в (1.106), при вычислении диффузионного потока нейтральных частиц, где концентрационный профиль принимается линейным, можно и здесь считать жидкость в слое б неподвижной. При этом учитывается основной гидродинамический эффект, который состоит в появлении диффузионного слоя толщиной б, зависящей от скорости. Таким образом, падение потенциала в диффузионном слое описывается формулой (1.94), где Ск равно [c.31]

    Основные уравнения. Ряд химических и физико-химических процессов часто осложняется гидродинамическими факторами, например, конвективным движением жидкости. Поэтому при расчете диффузионных потоков широко используют приближение независимой диффузии , предполагая, что диффузионный поток каждого компонента зависит только от градиента его собственной концентрации. Приближение независимой диффузии можно строго обосновать для трех важных случаев бинарной диффузии, когда смесь состоит только из двух компонентов разбавленной смеси, содержащей в избытке один из компонентов, концентрацию которого можно считать везде и всегда постоянной и, наконец, для случая, когда коэффициенты диффузии всех компонентов смеси могут считаться одинаковыми. Тем не менее на практике приближение независимой диффузии часто используют и вне области его строгой применимости [4]. [c.334]

    Заметим, что, начиная с того момента, когда концентрация промежуточного вещества достигает максимального значения, на основании метода квазистациоиарных концентраций приближенно можно положить [c.33]

    Схема пламенного детектора показана на рис. XIV. 13 Гендер-сон и Нокс [201 ] доказали, что линейная зависимость noKasannii от концентраций приближенно выполняется для 24 органических соединений. [c.277]

    Неприложимость закона разведения Оствальда к сильным электролитам зависит от того, что для сильных электролитов значение а, вычисленное но уравнению (17), не указывает действительной степени диссоциации. Лежащее в основе его вычислений предположение, что подвижность ионов не зaвJI ит от их концентрации, приближенно допустимо лишь там, где число ионов в единице объема незначительно. Для слабых электролитов эти условия в какой-то мере выполняются. Напротив, в растворах сильных электролитов концентрации ионов так высоки, что их подвижность сильно снижается в результате взаимодействия электрических зарядов ионов. С разведением растворов это взаимодействие уменьшается и вместе с тем повышается подвижность ионов. Это повышение подвижности иоцов объясняется увеличением эквивалентной электропроводности с разведением у сильных электролитов. Таким образом, изменение электропроводности не позволяет для них определить степень диссоциации. [c.90]

    При приближенных вычислениях и больших разбавлени растворов, а также при условии отсутствия посторонних ионе можно полагать активные концентрации приближенно равньи молярным концентрациям, т. е. а = Сок. и тогда [c.144]


    При работе в не очень широком диапазоне концентраций приближенно выполняется уравнение изотермы, выражаемое формулой (23) как будет показано ниже, вполне можно пользоваться формулами, приведенными в гл. III. Как видно нз рис. 43, в котором сравниваются найденные и вычисленные (пунктирные) изотермы адсорбции [вычисление производилось по уравнению (22), коюгангы к и I взяты из табл. 10], расхождение между ними возрастает при уве- [c.89]

    Итак, максимальная осаждаемость в данном случае достигается практически при равных объемах растворов осадителя и осаждаемого. Поскольку это установлено, видно, что для отыскания минимума на кривой количество в растворе — объем осадителя Ь особенно существенно знать ход кривой в окрестностях точки 6=1. Но если это так, к решению вопроса о местоположенни минимума можно притти пу тем более простых рассуждений, справедливых для значений Ь, не слишком близких к нулю, когда действительно не только неравенство но и Рассуждения эти таковы. Когда прилито стехиометрическое количество осадителя и затем еще объем его 6, настолько отличный от нуля, чтоб обеспечить неравенство сф с , равновесные концентрации приближенно выразятся [c.121]

    Определение приближенных значений pH кислот и оснований, а также границ применимости для этих целей упрощенных формул можно наглядно показать с помощью диаграммы Флуда, представленной на рис. 3. На этой диаграмме приведены значения pH в зависимости от констант ионизации кислот и оснований и их концентраций. Приближенные вычисления по упрощенным формулам, в которых условно принимается равенство равновесных и исходных концентраций кислот и оснований, возможны лишь в пределах зон, ограниченных штриховыми линиями. Искомое значение pH раствора определяется как точка пересечения линий —1 С и рЯа кислоты или р/Сь основания. Если точка пересечения этих линий за пределами обозначенных зон, то приближенные расчеты по упро-. щенным формулам недопустимы. Согласно теории Бренстеда —Лоури значение pH раствора любых смесей одноосновных кислот и сопряженных им оснований может быть рассчитано при рассмотрении общего уравнения равновесия кислота — сопряженное основание — вода. Поскольку в литературе для расчета кислотноосновных равновесий используют хотя и взаимосвязанные, но различные по смысловому содержанию концентрационные константы, необходимо уточнить их взаимосвязь. Для слабой кислоты используют константы кислотной ионизации Ка, основной ионизации со< пряженного с ней основания Кь и константу протонирования, или константу устойчивости протонного комплекса /С , Взаимосвязь между ними определяется соотношением  [c.23]


Смотреть страницы где упоминается термин Концентрация приближенное: [c.11]    [c.41]    [c.199]    [c.223]    [c.199]    [c.282]    [c.224]   
Колориметрический анализ (1951) -- [ c.379 ]




ПОИСК





Смотрите так же термины и статьи:

Приближенные a-МО для



© 2025 chem21.info Реклама на сайте