Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость диффузии. Диффузионный слой

    Диффузионный перенос вещества из одной фазы в другую происходит через поверхность раздела, образующуюся в месте соприкосновения обеих фаз. Считается, что по ту и другую стороны поверхности раздела образуются тонкие пограничные диффузионные слои, в которых наблюдается резкое изменение концентрации. Движение жидкости внутри пограничного слоя носит ламинарный характер, причем скорость движения возрастает линейно с увеличением расстояния от поверхности раздела. В массе газа или жидкости движение носит турбулентный характер. Здесь преобладает более быстрый процесс конвективной диффузии, что приводит к выравниванию концентраций в направлении, поперечном к иоверхности раздела фаз. Таким образом, в разных зонах той или другой фазы действуют различные механизмы переноса в зависимости от гидродинамических условий.  [c.262]


    Эффективная толщина диффузионного слоя согласно теории конвективной диффузии представляет собой комбинацию физико-химических величин О, п, т), д. Согласие теории стационарной диффузии Нернста с опытом объясняется тем, что скорость гетерогенною процесса, так же как и в теории конвективной диффузии, пропорциональна концентрации вещества в растворе. В настоящее время теоретические выражения для скорости стационарных гетерогенных процессов, лимитируемых конвективной диффузией, получены также, например, для струи, набегающей на край тонкой пластинки для потока жидкости внутри цилиндрической трубы и т. п. [c.374]

    III. I. СКОРОСТЬ ДИФФУЗИИ. ДИФФУЗИОННЫЙ слои [c.31]

    Принято считать, что при, перемешивании выравниваются концентрации в большей части объема, но у самой поверхности раздела всегда остается небольшой слой, не перемещающийся при перемешивании, и выравнивание концентраций через этот слой происходит путем диффузии (диффузионный слой). Чем интенсивнее перемешивание, тем тоньше диффузионный слой и тем меньшую роль диффузионные процессы играют в уменьшении скорости процесса в целом. Во многих случаях это может привести к тому, что скорость выравнивания составов может стать большей, чем скорость взаимодействия на самой поверхности, и тогда общая [c.488]

    Скорость гетерогенных процессов сильно зависит от перемешивания. Прн перемешивании выравниваются концентрации в большой части объема, но у самой поверхности раздела всегда остается небольшой слой, не перемещающийся при перемешивании. Выравнивание концентраций через этот слой происходит путем диффузии (диффузионный слой). Если Со — концентрация вещества в диффузионном слое, ас — во всем объеме фазы, то скорость диффузии через диффузионный слой будет тем больше, чем больше различие в концентрациях (со — с). [c.280]

    Рассмотрим процесс диффузии на бесконечной плоской стенке [3, 4]. Оценим толщину диффузионного пограничного слоя. Для простоты будем считать процесс стационарным. Из теории вязкого пограничного слоя известно, что v/u 8o/L, поэтому идС/дх- идС/ду. Поскольку 0о 5 ,, то профиль скорости в диффузионном слое равен скорости в непосредственной близости от стенки  [c.97]

    Из уравнения следует, что плотность тока пред, необходимая для образования губчатого осадка, будет понижаться с умень-щением концентрации ионов разряжающегося металла, возрастать с повышением температуры и скорости перемешивания электролита. Предельную плотность тока определяют путем снятия катодной поляризационной кривой. Ориентировочную оценку значения пред можно сделать, учитывая, что в среднем коэффициенты диффузии ионов в водных растворах при 20— 25 °С имеют порядок 10 см с, а толщина диффузионного слоя в условиях естественной конвекции может быть принята равной 0,05—0,1 см. [c.133]


    Рассмотрим кратко особенности макрокинетики топохимических реакций, связанные с процессами диффузии в твердом теле. Легко показать, что область протекания реакции в этом случае определяется соотношением между удельной скоростью реакции и скоростью диффузии через слой твердого продукта. Толщина слоя твердого продукта в ходе реакции возрастает, и значение указанного отношения падает, что соответствует увеличению вероятности перехода реакции в диффузионную область. [c.97]

    Процесс, в котором наиболее медленной стадией является подвод реагирующих компонентов или отвод продуктов реакции, протекает в диффузионной области. Это характерно для гетерогенных систем. Константа скорости процесса к в этом случае определяется как к = 0 8, где О — коэффициент диффузии б — толщина диффузионного слоя, зависящая от многих переменных. Для ускорения процессов увеличивают диффузию путем усиленного перемешивания, повышения скорости потоков взаимодействующих фаз, изменения условий, влияющих на вязкость, плотность и другие физические свойства среды. [c.90]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]

    Этот случай соответствует диффузионному режиму, когда скорость процесса зависит от коэффициента диффузии и толщины диффузионного слоя. [c.171]

    Если скорость диффузии металла Ме и кислорода по границам зерен значительно превышает скорость диффузии через кристаллиты, диффузионный слой [c.98]

    Толщина диффузионного слоя в сплаве в диффузионной области процесса, очевидно, будет определяться скоростью диффузии металлов Ме и М( в сплаве. Если принять, что в диффузионной области процесса окисления сплава скорость процесса окисления определяется скоростью диффузии реагентов через слой окалины, а скорость диффузии компонентов сплава через диффузионный слой сплава является подчиненным фактором, то большей относительной скорости диффузии компонента Ме в сравнении со скоростью диффузии компонента М1 в сплаве должна отвечать и большая толщина диффузионного слоя И, наоборот, меньшей относительной скорости компонента Ме должна отвечать и меньшая толщина диффузионного слоя. [c.99]

    Во многих каталитических системах наблюдается диффузия какого-нибудь промежуточного вещества в приповерхностные слои катализатора. Этот эффект в предположении быстрой диффузии учитывается в (4.22) коэффициентом и, который равен отношению максимально возможного количества адсорбированных молекул вещества Вг к общему количеству поверхностных активных центров. Если диффузионный процесс протекает относительно медленно, а так чаще всего и бывает, то система (4.22) дополняется соответствующим дифференциальным уравнением с частными производными, которые учитывают конечную скорость диффузии компонента В. Однако представляется очевидным, что каких-либо новых качественных результатов это не дает. [c.118]

    Следовательно, так как при pH =4ч-10 коррозия ограничена скоростью диффузии кислорода через слой оксида, небольшие изменения состава стали, термическая и механическая обработка ее не повлекут за собой изменений коррозионных свойств металла, пока диффузионно-барьерный слой остается неизменным. Скорость реакции определяют концентрация кислорода, температура или скорость перемешивания воды. Это важно, так как pH почти всех природных вод находится в пределах 4—10. Значит, любое железо, погруженное в пресную или морскую воду, будь то низко-или высокоуглеродистая сталь, низколегированная сталь, содержащая, например, 1—2 % N1, Мп, Мо и т. д., ковкое железо, чугун, холоднокатаная малоуглеродистая сталь, будет иметь практически одинаковую скорость коррозии. Этот вывод подтверждается большим количеством лабораторных и промышленных данных для разнообразных типов железа и стали 111]. Некоторые из них приведены в табл. 6.1. Эти данные опровергают распространенное мнение, что ковкое железо, например, является более коррозионностойким, чем сталь. [c.107]


    Толщину покрытий можно регулировать, изменяя температуру расплавленного металла и время пребывания покрываемого изделия в ванне. К недостаткам метода нанесения горячего покрытия относятся сравнительно большой расход цветных металлов, неравномерность покрытия, а также довольно большая толщина защитного металлического слоя. При алюминировании стали из расплава покрытие состоит из диффузионного слоя, непосредственно прилегающего к стальной основе и наружной зоны, в основном состоящей из алюминия. Переходный диффузионный слой отличается повышенной хрупкостью и твердостью, отрицательно влияющими на способность покрытия к деформации. Свойства покрытия и его сцепление с основой зависят от толщины и фазового состава диффузионного переходного слоя. Для снижения толщины и замедления скорости роста промежуточного слоя применяют добавки, уменьшающие диффузию. К наиболее благоприятным добавкам относятся кремний, медь и бериллий, введение которых позволяет уменьшить толщину переходного слоя более чем на 50%. [c.79]

    Поскольку коррозия алюминиевых сплавов в слабощелочных растворах также в значительной степени определяется диффузией кислорода к корродирующей поверхности, то повышение температуры до 60°С приводит к ускорению коррозии в результате увеличения скорости диффузии кислорода и уменьшения толщины диффузионного слоя. А при температурах больше 60 °С коррозия замедляется 1 следствие снижения растворимости кислорода в воде, (роме того, с повышением температуры изменяются состав и свойства нерастворимых продуктов коррозии алюминия и его сплавов. При температурах до 70 °С образуется байерит (АЬОз-ЗНгО), [c.106]

    Математические выражения для скорости гетерогенных, процессов при стационарной конвективной диффузии получаются обычно очень сложными. Поэтому рассмотрим вначале приближенную теорию стационарной конвективной диффузии (Нернст). Предположим, что вблизи поверхности твердого тела даже при наличии конвекции в растворе имеется неподвижный слой толщиной в несколько тысяч молекулярных размеров, так называемый эффективный диффузионный слой толщиной 6, через который доставка вещества к поверхности твердого тела осуществляется только за счет диффузии. Внутри слоя 6 конвекция отсутствует (рис. 95, а). Концентрация вещества в эффективном диффузионном слое на границе с раствором равна концентрации q в объеме раствора. А внутри дис узионного слоя концентрация вещества падает вблизи поверхности твердого тела до некоторой величины с Эффективная толщина диффузионного слоя не имеет физического смысла и представляет собой эмпирическую постоянную. Представление об эффективной толщине диффузионного слоя позволяет считать, что вещество доставляется к реагирующей поверхности только за счет диффузии. [c.372]

    Конвективная теория диффузии считает диффузионный слой составной частью пограничного слоя Прандтля (O = = 0,1 брр), причем его толщина в случае вращающегося дискового электрода зависит от скорости вращения, коэффициента диффузии А и кинематической вязкости жидкости v  [c.131]

    Следовательно, плотность тока на жидком катоде контролируется скоростью диффузии, а последняя — коэффициентом диффузии. Кроме того, на значении плотности тока благоприятно сказывается высокая концентрация ионов осаждаемого металла и минимальная толщина диффузионного слоя. Для ускорения процесса переноса в глубину катодного сплава последний в техническом электролизе обычно перемешивается либо с помощью специальной мешалки, либо путем протекания сплава через ванну. [c.142]

    Процесс выравнивания составов ускоряется при перемешивании, а при отсутствии перемешивания осуществляется только путём ди( х )узии. Вследствие длительности протекания диффузионных процессов, скорость выравнивания составов фаз и скорость реакции в большинстве гетерогенных процессов сильно зависят от перемешивания. Однако перемешивание выравнивает концентрации в большей части объема, но вдоль поверхности раздела фаз всегда остаётся тонкий слой, через который выравнивание концентраций происходит только путём диффузии (диффузионный слой). Чем интенсивнее перемешивание, тем тоньше диффузионный слой и тем меньшую роль играют диффузионнные процессы. [c.272]

    Д. я больншпства растворов v имеет порядок 10 м -с . Передача растворенного вещества от слоя к слою, т. е. его диффузия, определяется коэффициентом диффузии D порядок которого составляет обычно 10 м -с-. Таким образом, передача движения является более эффективной, чем передача растворенного вещества диффузней, и поэтому при сопоставимых значениях DuwD градиент скорости может быть меньше, чем градиент концентрации, т. е. толщина слоя Прандтля должна быть больше, чем толщина диффузионного слоя брг>б. Существует следующее соотношение между этими величинами  [c.311]

    В промышленности используют два типа скелетных никелевых катализаторов — катализатор Бага [193] и никель Ренея [194]. Оба получают из сплава N1 с А1, однако, если никель Ренея представляет собой мелкодисперсный порошок, состоящий из чистого никеля, то катализатор Бага — кусочки никель-алюминиевого сплава (65—75% N1 и 35—25% А1). Исходные сплавы получают чаще всего пирометаллургическими способами — сплавлением компонентов или алюмотермией. В последнее время используют методы порошкообразной металлургии — спекание предварительно спрессованных смесей никелевых и алюминиевых порошков в восстановительной или инертной атмосфере при 660—700 °С. Реакции между двумя твердыми телами с образованием новой твердой фазы включают процесс диффузии, поскольку реагирующие вещества разделяются образующимся продуктом реакции [174]. Реагирующие вещества сохраняют постоянную активность с обеих сторон реакционной поверхности раздела фаз, в связи с чем скорость переноса материала определяется скоростью нарастания толщины диффузионного слоя продукта и выражается формулой [c.166]

    Уравнения (15.68) и (15.69) внешне не отличаются от уравнения (15.6), выведенного ранее в предположении замедленности диффузии. В обоих случаях раствор вблизи электрода может оказаться полностью освобожденным от восстанавливаемых частиц, что резко увеличивает поляризацию (т1- -с ) и устанавливает предел росту плотности тока (/->/г)- В условиях диффузионных ограничений компенсация разрядившихся частиц происходит за счет их постушления из толщи раствора под действием градиента концентрации, возникающего внутри диффузионного слоя б. Предельная диффузионная плотность тока отвечает в зтом случае максимально возможному градиенту концентрации и является функцией коэффициентов диффузии реагирующих частиц. В условиях замедленности чисто химического превращения восполнение разряжающихся частиц совершается за счет химической реакции, протекающей в непосредственной близости от электрода или на его поверхности. Предельная реакционная плотность тока /г должна быть функцией констант скорости соотнетствующих химических превращений. Определение величин /г н установление закономерностей химического перенапряжения дает основу для изучения кинетики быстрых химических )еакций электрохимическими методами. [c.324]

    Диффузионный путь любой протяженности изображается набором стандартных диффузионных топологических единиц (см. рис. 5.7), где Т — нсевдоэнергетический транспортный элемент, характеризующий скорость диффузии. Пусть г— радиус пористого зерна катализатора, разобьем его на N шаровых слоев толщиной гШ, причем разбиение не обязательно равномерно. Пусть выполняются условия квазигомогенностиу пористой среды и изо-термичностп процесса. В этом простейшем случае диаграмма взаимосвязи каталитической реакции и диффузии в шаровом слое зерна катализатора примет вид, изображенный на рис. 5.8. [c.227]

    Согласно теории Нериста, к поверхности твердого тела прилегает тонкий слой неподвижной жидкости толщиной 6, в котором происходит диффузия растворяющегося вещества. За пределами этого слоя движение жидкости, увлекающей растворенное вещество, приводит к поддержанию постоянства концентрации во всем остальном объеме раствора. Толщина б получила название толщины диффузионного слоя Нернста. Она зависит только от скорости перемещения диффундирующего вещества [c.205]

    Движение жидкости относительно электрода стабилизирует толщину диффузионного слоя б и делает ее меньше, что соответствует конвективной диффузии, т. е. диффузии в движущейся жидкости. Увеличение скорости перемещения жидкости приводит к ускорению диффузии. Теория диффузии в движущейся жидкости разрабатывалась в работах ряда исследователей (Д. А. Франк-Каменецкого, Зйкена, В. Г. Левича) и была сформулирована [c.207]

    Н. Д. Томашов показал, что при расчете количества диффундирующего к отдельному катоду К, кислорода в первом приближении весь неограниченный объем электролита, принимающий участие в диффузии кислорода к поверхности катода (рис. 163), может быть заменен некоторой условной фигурой РООЕ (рис. 164), дающей ту же скорость диффузии кислорода, но с изо-концентрационными поверхностями, параллельными поверхности катода и поверхности раздела диффузионного слоя, т. е. эта фи- [c.236]

    Как указывалось выше, толщина диффузионного слоя (которая колеблется обычно в пределах 0,001—0,1 см) растет при увеличении кинематической вязкости электролита v и коэффициента диффузии диффундирующего вещества и уменьшается при увеличении скорости движения электролита v . Коэффициент диффузии кислорода в воде равен 1,86 10 см /с при 16° С и 1,875 10" mV при 2, 7° С, т. е. увеличивается с ростом температуры. Изменение коэффициента диффузии кислорода в водных растворах Na l при 18° С приведено ниже  [c.238]

    На самом деле скорость потока плавно спадает по мере приближения к твердой поверхности, так что представление о существовании неподвижного диффузионного слоя не соответствует действительности. Чтобы найти поток вещества, диффундирующего на твердую поверхность, необходимо решить уравнение конвективной диффузий с граничными условиями, заданньйли на этой поверхности [12]. В случае ламинарного движения стационарное распределение концентрации вещества определяется уравнением конвективной диффузии  [c.103]

    Вычислите скорость диффузии р и соотношение толщины диффузионных слоев (61/63) в опытах 1 и 3, используя следующие данные KOfio Tb перемешивания 400 об/мин [c.408]

    Р е л е н и е. Поскольку на металлическом серебре в ходе реакции оэразустся бромид серебра, можно предположить, что скорость реакции будет лимитироваться скоростью диффузии Ag или Вгг через слой AgBr. Для проверки предположения строим графики зависимостей Am/S == f(t) (1) и (Am/S) — f t) (2). Прямая в координатах (Am/S) — -- t подтверждает предположение о том, что реакция протекает в диффузионной области. Константу скорости к находим из графика, как тангенс угла наклона прямой  [c.410]

    Выше отмечалось, что при жидкофазной гидрогенизации интенсивность гидрирования ограничена скоростью диффузии водорода к углеводородкоА у слою у катализатора. Естественно, что при этом применение активных катализаторов нецелесообразно, так как такие катализаторы будут испытывать водородное голодание , а скорость и глубина процесса будут по-прежнему определяться диффузионным фактором. [c.279]

    Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме [7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах [c.193]

    Появление положительного и отрицательного выравнивания может быть связано и с отводом каких-либо частиц от катода в объем раствора. Например, в электролитах на основе комплексных соединений неравнодоступность микропрофиля катодной поверхности будет проявляться в различной скорости диффузии комплексных ионов к катоду и диффузии от катода в объем раствора освобождающихся частиц лиганда. В результате этого на внутренней границе диффузионного слоя отношение концентраций металл/лиганд будет выше у микровыступов, чем у мпкроуглублений, что приведет к соответствующему перераспределению скорости осаждения. Известно, что при постоянном потенциале скорость осаждения тем выше, чем выше отношение металл/лиганд. Таким образом, эффект антивыравнивания будет суммарным результатом неравномерного микрораспределения скоростей диффузии двух видов частиц в противоположных направлениях. [c.16]


Смотреть страницы где упоминается термин Скорость диффузии. Диффузионный слой: [c.330]    [c.368]    [c.319]    [c.46]    [c.207]    [c.352]    [c.220]    [c.166]    [c.106]    [c.15]   
Смотреть главы в:

Потенциостатические методы в коррозионных исследованиях и электрохимической защите -> Скорость диффузии. Диффузионный слой




ПОИСК





Смотрите так же термины и статьи:

Диффузионный слой

Диффузия скорость диффузии

Скорость диффузии

Скорость слоем



© 2024 chem21.info Реклама на сайте