Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калориметр, измерение теплот

    Экспериментально высшую и низшую теплоты сгорания топлив определяют при помощи различных калориметров. Для измерения теплоты сгорания газов в газопроводах применяются регистрирующие калориметры непрерывного действия. Их калибруют с помощью так называемого водяного калориметра. Принцип действия его состоит в том, что газ, подаваемый с определенной скоростью, сжигается в камере сгорания и выделяющееся тепло затрачивается на повышение температуры проходящей через калориметр воды. [c.76]


Рис. 19.2. Калориметр для измерения теплот смачивания Рис. 19.2. Калориметр для <a href="/info/86269">измерения теплот</a> смачивания
    Основным источником накопления термохимических данных служат прямые измерения теплот реакций и теплот растворения. Измерение теплот реакций возможно при соблюдении двух условий 1) когда в калориметре протекает только одна реакция и 2) реакция протекает до конца достаточно быстро, так что теплота за время ее измерения не успевает рассеиваться в окружающую среду. Если эти условия не обеспечены, прибегают к косвенному определению теплового эффекта, комбинируя известные теплоты других реакций на основе закона Гесса (см. 3 этой главы). Наиболее часто в таких расчетах используют теплоты образования веществ и ионов, теплоты сгорания и теплоты растворения. [c.80]

    Развитие новой прогрессивной технологии потребовало в последнее время сведения о теплотах образования карбидов, фторидов и других соединений, для которых обычная калориметрия (сжигание в атмосфере кислорода) оказалась неэффективной. В связи с этим развивается фторная калориметрия, т. е. измерение теплоты сгорания соответствующих соединений в атмосфере фтора. [c.212]

    На рис. 1.13 приведена схема простейшего прибора для измерения теплоты парообразования жидкостей и растворов продуванием индифферентного газа. Здесь исследуемый раствор находится в конической колбе, являющейся калориметрическим сосудом. Через трубку подается сухой, чистый газ, предварительно нагретый до температуры калориметра. Для сбора сконденсировавшегося унесенного газом пара служит приемник, помещенный в пробирку с боковым отверстием для входа парогазовой смеси. При продувании газа через жидкость она будет охлаждаться за счет испарения. С помощью нагревателя в калориметр вводят такое количество теплоты д, которого было бы достаточно для того, чтобы температура жидкости вновь приобрела исходное значение. Зная убыль массы жидкости (растворителя, раствора) Ат и значение ц, по уравнению (1.23) вычисляют теплоту испарения АЯ°исп при температуре калориметра. [c.24]


    Из измерений теплот адсорбции при разных температурах может быть определена теплоемкость адсорбированного вещества. Для изучения теплоемкости адсорбционной системы в широком интервале температур нужны прямые измерения теплоемкости этой системы в сканирующем калориметре по возможности при малой скорости нагревания (см. лекцию 13). [c.159]

    Установленная связь между адсорбцией и смачиванием делает измерение теплот смачивания твердых тел жидкостями одним из наиболее плодотворных способов изучения взаимодействия иа границе раздела твердое тело — пар. На первый взгляд это кажется парадоксальным, однако прямые калориметрические измерения Qx (интегральных теплот смачивания) методически проще и надежнее, чем измерения Qa, они применимы даже тогда, когда измерения Qa затруднены и позволяют исследовать энергетическую неоднородность твердых поверхностей, их среднюю полярность, закономерности адсорбции из растворов и т. д. Современные калориметры, снабженные термисторами, позволяют измерять Qx с точностью до 0,04 Дж. Изучая смачивание чистого твердого тела и образцов, на которых предварительно адсорбировано вещество, можно построить кривые зависимости Qx от степени заполнения поверхности. Обычно значения Qx положительны и по мере заполнения поверхности уменьшаются, поскольку вначале смачиваются наиболее активные участки. Анализ этих кривых позволяет найти количественное распределение активных центров по энергиям. [c.114]

    Тэйлор и другие [115] разработали дифференциальный калориметр для измерения теплот смачивания твердых веществ. Для проведения экспериментов в воде и бензоле были использованы типы пирогенного кремнезема (аэросилы) с надежно определенными характеристиками. [c.894]

    Важной экспериментально измеряемой величиной является теплота адсорбции. Непосредственно теплоту, выделяющуюся при приведении паров адсорбата в контакт с образцом, можно измерить с помощью калориметра, описанного Биби и др. [28]. Другой метод определения теплоты адсорбции предусматривает измерение теплоты смачивания в жидком адсорбате адсорбента, содержащего различные количества предварительно адсорбированного пара. Разность между теплотами смачивания при различных степенях заполнения поверхности непосредственно связана с интегральной теплотой адсорбции (см. гл. VII, разд. VII-ЗБ). Пример современного калориметра дан на рис. XIV-6 [29] (см. также [30]). В качестве чувствительного датчика температуры можно использовать кварцевый пьезоэлемент [31]. Наконец, адсорбцию из газовой фазы, как и адсорбцию из растворов, можно измерять хроматографическим методом [16]. [c.450]

    Для измерения теплот адсорбции применяются в основном калориметры, в которых производится компенсация теплового эффекта при постоянной или близкой к постоянной температуре [1, 29, 30, 33]. Достигнута столь высокая точность калориметрического измерения теплового эффекта, что погрешность определения средней мольной и дифференциальной теплот адсорбции часто определяется погрешностью измерения количества адсорбированного вещества. [c.99]

    Использование результатов калориметрических исследований теплот адсорбции и теплоемкостей адсорбционных систем. Результаты калориметрических измерений тепловых эффектов адсорбции могут зависеть от условий протекания процесса адсорбции в экспериментальной установке, а не только от выбранных начальных и конечных состояний системы адсорбат — адсорбент. Поэтому из результатов таких калориметрических измерений надо найти термодинамические характеристики адсорбционной системы, не зависящие от условий проведения калориметрического опыта. Прежде всего, сюда относится получение из результатов калориметрического измерения теплоты адсорбции величины соответствующего изменения внутренней энергии адсорбционной системы и получение из калориметрических измерений при нагревании адсорбционной системы собственно ее теплоемкости и ее изменения, происходящего при адсорбции. Такая термодинамическая интерпретация результатов калориметрических измерений часто встречает затруднения и требует рационального выбора условий проведения этих измерений и учета их конкретных особенностей. При такой интерпретации калориметрических измерений теплот адсорбции, соответствующих переходу адсорбционной системы из некоторого начального состояния в конечное состояние равновесия или близкое к нему, надо, в частности, исключить или учесть возможности совершения над системой внешней работы или теплообмена вне калориметра. [c.104]

    Так как нар или газ входит в подсистему / из подсистемы Пв или IIб, не производя работы против какой-либо внешней силы (потому что система имеет жесткие стенки), все изменение внутренней энергии в подсистеме / с адсорбентом выделяется в окружающую эту подсистему I среду в виде теплоты. В этих случаях измеренная в окружающем подсистему I с адсорбентом изотермическом калориметре интегральная теплота при отсутствии теплообмена вне калориметра [c.142]


    Вообще следует заметить, что адсорбционная калориметрия при экстремально низких температурах может дать весьма богатую информацию не только о емкости монослоя, но и об энергетической неоднородности поверхности в чистом виде [1], о характере и природе взаимодействия с адсорбентом и т. д. Наконец, из данных по дифференциальным теплотам адсорбции путем графического интегрирования можно определить теплоту исчезновения адсорбционной пленки и отсюда — удельную поверхность адсорбента [3]. Этого можно достигнуть и непосредственным измерением теплоты смачивания пористого адсорбента с предадсорбированной смачивающей жидкостью [4], [c.141]

    Во-первых, так как значения /г считаются уже известными, то необходимо лишь одиночное измерение теплоты смачивания, тогда как при адсорбции газов для изотермы адсорбции необходимо получить несколько точек, причем каждая точка должна быть тщательно рассчитана. В случае измерения теплот смачивания учитывается поправка на охлаждение, если только не используется адиабатический калориметр, который обычно бывает сложным по конструкции и по управлению. [c.341]

    При конструировании калориметра для измерения теплот смачивания необходимо учитывать следующие обстоятельства  [c.387]

    Р и с. 178. Калориметр для измерения теплот смачивания. [c.390]

    Р и с. 179. Двойной калориметр для измерения теплот смачивания [93]. [c.391]

Рис. Х1У-6. Калориметр для измерения теплот смачивания [29]. Рис. Х1У-6. Калориметр для <a href="/info/86269">измерения теплот</a> смачивания [29].
    Исследования, рассматриваемые в настоящем разделе, проводились в основном с окисными пленками толщиной около 100 А, находящимися на металле. Исходный металл предварительно получали в виде гранул такими способами, которые обеспечивали минимальное содержание окисла. Так, медь готовили восстановлением водной суспензии гидроокиси меди гидразином, никель и кобальт получали в вакууме термическим разложением соответственно оксалата никеля и формиата кобальта. Металлы восстанавливали па месте водородом и после этого получали окисную пленку путем регулируемого окисления, обычно при низком давлении. Поверхности окислов имели величину в пределах от 1 до 10 м /г. Измерения теплот адсорбции, за исключением одного случая использования калориметра с окисленной медной фольгой [13], производили на калориметрах типа [c.312]

    Для этой цели термометр нагревают а водяной бане с температурой на 2—3 °С выше температуры кристаллизации чистого растворителя (либо температуры жидкости в калориметре при измерении эндотермических тепловых эффектов) или на 6—7 °С выше температуры калориметрической жидкости при измерении теплот экзотермических процессов. При этом ртуть не только заполнит весь капилляр термометра, но и войдет в верхнюю часть запасного резервуара. Выдержав термометр в бане 2—3 мин, вынимают его и резким толчком отрывают излишнюю ртуть от верхней части капилляра. Встряхивание термометра для отрыва ртути нужно производить осторожно, чтобы не разбить термометр. [c.127]

    Тщательные измерения теплот растворения трехфтористого бора и борной кислоты в плавиковой кислоте, позволяющие вычислить более точное значение ДЯ°/ (BFg, газ), были проведены Скуратовым, Канарской и Мартыновым [38]. Авторы [38] измерили в адиабатическом калориметре теплоты реакций [c.746]

    Значения теплоты образования окиси бериллия, вычисленные на основании измерений теплоты ее растворения в плавиковой кислоте [1173, 1174, 2810], не могут считаться точными [3524, 25], в частности, из-за того, что в этих работах тепловое значение калориметра вычислялось как сумма теплоемкостей всех составных частей калориметрической системы, что неверно для растворов. [c.802]

    Несмотря на высокую точность и совершенство современных калориметров, чувствительность их во многих случаях недостаточна для измерения теплот адсорбции, особенно в области низких давлений, где измеряемые тепловые эффекты выходят за пределы погрешности эксперимента. Второй недостаток калориметрических методов состоит в том, что адсорбат вводят в сосуд с адсорбентом конечными порциями, вследствие чего измеряемые теплоты несколько отличаются от равновесных величин. [c.22]

    Существует несколько экспериментальных методов получения термодинамических характеристик расплавленных солевых смесей измерение теплот смещения [1], измерение давления пара [2], крно-скопические методы [3], измерение э. д. с. [4]. Не считая высокотемпературной калориметрии (измерение теплот смешения), метод [c.8]

    Теплоту смачивания адсорбентов и порощков с большой удельной поверхностью определяют в калориметрах обычного типа. Для получения надежных данных при измерении теплот смачивания грубодисперсных систем с малой удельной поверхностью применяют высокочувствительные микрокалориметры. [c.151]

    Определение теплоты смачивания порошков с большой удельной поверхностью (десятки и сотни м 1г) может быть осуше-ствлено в калориметрах сравнительно простой конструкции. Измерение теплот смачивания грубодисперсных систем с малой удельной поверхностью требует применения высокочувствительных микрокалориметров. [c.149]

    Для измерения теплоты смачивания пользуются калориметрами самых разнообразных конструкций. В лаборатории коллоидной химии ЛГУ применяют весьма простой прибор типа калориметра Шот-тки. Калориметр (рис. 60) состоит из сосуда— кожуха 7 (дюаровский сосуд), помещенного в термостат 8. В сосуд вставляется второй сосуд 6 с капилляром и шкалой 1 и боковым отростком 3 с краном и воронкой. Во внутреннем сосуде имеется вплавленная пробирка. Внутренний сосуд наполняется жидкостью с большим коэффициентом термического расширения (толуол или хлороформ), а сверху водным раствором какого-ни-будь красителя, для облегчения наблюдений по капиллярной шкале. [c.149]

    Для исследования зависимости теплот адсорбции и от температуры, соответствующей вторым производным по температуре d пК 1АТ и, соответственно, дЧпс/дТ ) или (дЧпр/дТ ), нужны прямые калориметрические измерения либо самих теплот адсорбции при разных температурах, либо теплот адсорбции при одной температуре и теплоемкости адсорбционной системы. Следует отметить, что калориметрические измерения теплот адсорбции ограничены во времени из-за некоторого неизбежного теплообмена калориметра с окружающей средой даже в случае дифференциального и изотермического метода измерения. [c.159]

    Для суждения о характере взаимодействия веществ в физико-химическом анализе изучаются разные физические свойства, чувствительные к изменению состава системы. В качестве таких свойств используются температуры фазовых превращений (например, плавления), теплоты образования, теплопроводность, теплоемкость, электросопротивление, плотность, коэффициент теплового расширения, твердость и др. Сюда следует добавить методы исследования макро- и микроструктуры нейтронографию, рентгенофазовый и рентгеноспектральный анализ, ЯМР, Y-peзoнaн нyю спектроскопию, электронную микроскопию, метод высокотемпературной калориметрии, измерение магнитной восприимчивости, точки Кюри и т. д. [c.264]

    Для прецизионных измерений теплот смачивания нужно рекомендовать двойной металлический калориметр, поскольку стекло замедляет процесс установления теплового равновесия. На рис. 179 показана схема такого калориметра, конструкция которого была разработана Бар-телом и Саджитом [93]. Два совершенно одинаковых калориметрических стакана С и С подвешены при помощи тонкостенных ( 0,1 мм) трубок I и к крышкам тонких медных вакуумных рубашек / и эти трубки прикреплены в бронзовых втулках к бронзовой пластине R и к бронзовым трубкам П и О, в которых помещены мешалка и проводники. Рубашки I и I полностью погружены в сосуд, термостатированный с точностью 0,003°, в котором осуществля- [c.390]

    В последнее время большие успехи достигнуты в области фторной калориметрии, основанной на измерении теплот сгорания исследуемого вещества в атмосфере boj-бодного фтора. Фтор обладает более высокой химической активностью по сравнению с кислородом, что существенно расширяет возможности экспериментальной калориметрии, позволяя исследовать вещества, не реагирующие с кислородом. Таким путем были получены, в частности, надежные значения энтальпий образования ряда бори-дов. Большое практическое значение имеет также калориметрическое исследование реакций галогенирования, азотирования, гидрирования и т. д. [c.33]

    Трудность измерения теплового эффекта при гелеобразовании желатины связана с небольшой его величиной, для определения которой были необходимы чувствительные приборы и методы. В работах ряда авторов [107—111] для определенпя теплового эффекта гелеобразования применялись дифференциальные термопары с визуальным отсчетом и с применением фотозаписи при помощи саморегистрирующего пирометра Курнакова. Эти методы и приборы оказались недостаточно точными и чувствительными для измерения тепловых эффектов при гелеобразовании, и поэтому дальнейшие термохимические исследования гелей желатины велись по измерению теплот набухания и растворения, а также по измерению теплоемкости гелей с использованием чувствительных калориметров. Эти исследования и выявили, что теплоты растворения и набухания гелей желатины зависят от температуры, тогда как для термолизованной желатины эта зависимость не наблюдалась. Теплота плавления геля, полученная из температурной зависимости величины предельного набухания, равна 3,75 кал г белка [61], однако калориметрические исследования теплот растворения студня желатины в 8 М растя,ipe мочевины дали теплоту плавления 9 кал г [110]. [c.72]

    Наиболее распространенными методами определения теилот парообразования ве сств являются методы непосредственного измерения теплоты парообразования и методы конденсации пара в калориметре П, 2]. Используются также косвенные ме тодй, основанные на использовании ураз нения Клапе11рона—Клаузиуса. [c.449]

    В других типах калориметрических экспериментов выделяются очень малые количества теплоты, и поэтому применяются чувствительные дифференциальные методы, использующие термисторы (полупроводники с экспоненциальной зависимостью сопротивления от температуры). Некоторые специальные калориметры имеют чувствительность в одну микрокалорию. Такие калориметры можно использовать для измерения теплоты, выделяющейся в реакциях с участием белков и полинуклеотидов. [c.31]

    Термические эффекты. Результаты многочисленных измерений теплот адсорбции на образцах кремнезема с известными значениями удельных поверхностей были описаны в целом ряде работ. Однако надо отметить, что на полученные результаты могли влиять многие факторы, кроме того, оборудование для проведения подобных исследований достаточно сложно. Гаркинс и Юра [105] разработали абсолютный метод, в котором образец порошка изотермически приводится в равновесие с паром воды вплоть до того момента, когда поверхность кремнезема покроется пленкой воды, после чего образец погружается вводу, находящуюся в высокочувствительном калориметре. По количеству выделяющейся при этом теплоты, выраженной в эргах на грамм SiOa, деленной на полную поверхностную энергию воды (118 эрг/см ), можно определить удельную поверхность кремнезема. Данный метод применим только для ограниченного числа типов кремнезема. Теплоты смачивания различных порошков, в том числе порошков кремнезема, также были связаны с удельной поверхностью [106]. [c.651]

    Для измерения теплот набухания, теплот равновесия различных форм и теплот частичного обмена как функции от состава ионообменника использовался простой калориметр, работающий в неизотермиче-скнх условиях. Теплоты полного обмена получали суммированием теплот частичного обмена от двух чисто катионных форм до смешанной формы, за исключением Rb+- и Сб -форм, где была необходима экстраполяция. С помощью соответствующих термодинамических расчетов можно получить в зависимости от состава ионообменника стандартные А// и дифференциальные д АИ1)/дд теплоты неполного обмена. Стандартные величины свободной энергии АС были получены либо из графиков, построенных по методу Киелланда, либо путем обработки данных, полученных по методу Гайнеса и Томаса (табл. 17). [c.84]

Рис. 11,10. Влияние температуры (указана на рис.) обработки канальной сажи ЗрЬегоп-б на зависимость измеренных в калориметре дифференциальных теплот адсорбции аргона от заполнения поверхности 0 при 77,8 К. Рис. 11,10. <a href="/info/15368">Влияние температуры</a> (указана на рис.) обработки <a href="/info/22510">канальной сажи</a> ЗрЬегоп-б на <a href="/info/741791">зависимость измеренных</a> в калориметре <a href="/info/300964">дифференциальных теплот адсорбции</a> аргона от заполнения поверхности 0 при 77,8 К.
    Калориметрические методы определения теплот адсорбции и теплоемкости адсорбционных систем. В тех случаях, когда равновесная концентрация адсорбата в газе с или его давление р малы и их нельзя измерить с нужной для определения температурного коэффициента дс дТ или др1дТ точностью, нужны прямые калориметрические измерения теплоты адсорбции. Измерения в калориметре необходимы и в тех случаях, когда дифференциальная теплота адсорбции сильно изменяется с изменением температуры [32] (рис. 1П.2). [c.99]

    Дифференциальная теплота адсорбции дса1 может быть измерена калориметрически она может быть также рассчитана с помощью уравнения Клаузиуса—Клапейрона ( изостериче-ская теплота адсорбции <754-) Однако при оценке результата как тем, так и другим методами должна соблюдаться некоторая осторожность. Во-первых, калориметрия адсорбции достаточно трудна, и методика точного измерения небольших количеств выделяемого тепла разработана только в послевоенное время. И, во-вторых, изотермы, используемые для расчета изостерической теплоты адсорбции, должны быть достаточно точными кроме того, важно установить их полную обратимость по отношению к температуре и давлению (см. рис. 3). Калориметрические измерения теплоты адсорбции не столь просты, как ее расчеты с помощью изотерм адсорбции, но зато при тщательно проводимых измерениях дают большую точность. [c.72]

    Цетлемойер и сотр. [91] описали конструкцию простого калориметра, по-видимому пригодного для серийных измерений теплот смачивания. Подъем температуры в этом калориметре измеряется с помощью термистора. В качестве калориметрического стакана (рис. 178) используется сосуд Дьюара, к которому приклеено кольцо из плексигласа с крышкой из того же материала. В калориметре помещаются вакуумная мешалка, нагреватель В (около 5 ом) для электрической калибровки, термистор С, ампула с образцом Р и держатель О. После установления теплового равновесия ампула разбивается при помощи стального ударника Е. Перемешивание нужно проводить с постоянной скоростью. Подъем температуры в обычных опытах по смачиванию мал и фиксируется по увеличению сопротивления термистора, включенного в мост. Необходимо вводить поправки на теплоту, выделяемую при разбивании ампул (стр. 392). [c.389]

    Примененный нами калориметр состоял из сосуда Дьюара обш,ей емкостью около 500 мл. В эбонитовой крышке сосуда имелись отверстия для мешалки, термометра Бекмана (точность отсчета 0,001°), электрического нагрева (константановая обмотка с сопротивлением около 18 ом), стеклянной трубки, в которую помещалась пробирка с тонкостенным раздутием на конце (для навески нитроцеллюлозы), и изогнутого стеклянного штифта, при помощи которого разбивалось раздутие в проб>ирке при измерении теплот сорбции. Сосуд Дьюара укреплялся в большом стеклянном посеребренном стакане, находящемся в водном термостате с постоянной температурой 25°. С аналогичным калориметром работали Фрейк [14] и Липатов и Преображенская [15]. [c.208]


Смотреть страницы где упоминается термин Калориметр, измерение теплот: [c.365]    [c.217]    [c.221]    [c.100]    [c.90]   
Физическая химия поверхностей (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение калориметр

Калориметр

Калориметрия



© 2025 chem21.info Реклама на сайте